As requested, here is the e-mail transmitting CBD’s comments.

----- Forwarded by Mary Klee/ARL/R9/FWS/DOI on 08/08/2007 10:42 AM -----
June 19, 2006

Ms. Michelle Morgan
Chief, Branch of Recovery and Delisting
Endangered Species Program
Headquarters Office
U.S. Fish and Wildlife Service State Director
4401 N. Fairfax Drive, Room 420
Arlington, VA 22203
baldeagledelisting@fws.gov

Dear Ms. Michelle Morgan

RE: (1) U.S. Fish and Wildlife Service RIN 1018-AF21
(2) Illegal and unprofessional U.S. Fish and Wildlife Service failure to provide for adequate protection for the Desert Nesting Bald Eagle Distinct Population Segment with the proposed rule to delist the Bald Eagle nationwide.

On July 6, 1999, the U.S. Fish and Wildlife Service (USFWS) proposed removal of Endangered Species Act (ESA) protection for the Desert Nesting Bald Eagle (DNBE).\(^1\) Such a proposal was illegal and unprofessional then. It is even more so in 2006.

Our comments, dated October 4, 1999, documented the facts that, “This discreet population persists in a unique ecological setting. Threats to the continued existence of this population are increasing. Chances of expansion for this population do not exist. Loss of this discrete population would result in a significant gap in the range of the Bald Eagle.”\(^2\)

Since the July 6, 1999, proposal, new information concerning DNBE has surfaced. This new information includes excessive participation of juveniles in the breeding population, increasing habitat risks, persistently excessive rates of juvenile and adult mortality, decreased nest productivity outside the core Salt River and Verde River nests, and a Population Viability Analysis demonstrating a high risk of extinction within the foreseeable future.

\(^1\) USFWS 1999 (July 6, 1999).
\(^2\) SWCBD 1999.
On May 2, 2003, the Arizona Game and Fish Department (AGFD) presented the preliminary findings of their Population Viability Analysis at the “Arizona Bald Eagle Demographic Model Predicts a Decline Whereas Breeding Adult Counts are Increasing,” at the Cooper Ornithological Society meetings in Flagstaff. At the meeting, AGFD stated, “Although counts of breeding adults increased 4% per year over this period, productivity and survivorship estimates led to a model of population dynamics that predicted the population was declining.”

AGFD’s Population Viability Analysis (PVA) was never finalized in spite of extensive peer review concurrence with its results. AGFD’s PVA was never finalized owing to the fact that its conclusion fails to support the Arizona Game and Fish Commission’s and its subservient AGFD administrative goal of weakening imperiled wildlife protection in Arizona.

After AGFD’s administrative suppression of it’s DNBE PVA, CBD secured the AGFD data. Using the AGFD data, we reached the same conclusion: In spite of increasing counts of breeding adults, population viability analysis demonstrates a high risk of extinction for this population within the next 57 and 82 years. On October 6, 2004, CBD and Maricopa Audubon petitioned USFWS for increased protection for DNBE based on (1) the new information concerning excessive participation of juveniles in the breeding population, increasing habitat risks, persistently excessive rates of juvenile and adult mortality, and (2) based on CBD’s finalization of AGFD’s suppressed Population Viability Analysis demonstrating a high risk of extinction within the foreseeable future. USFWS has chosen to ignore the Petition and its extensive supporting data. USFWS choice is not only unprofessional, it is illegal.

On March 27, 2006, CBD and Maricopa Audubon filed a lawsuit to remedy USFWS’ blatant disregard for law and for DNBE’s need for increased protection. Recognizing the blatant disregard for law by USFWS officials, Department of Justice lawyers representing USFWS have requested a settlement.

USFWS’ February 16, 2006, Federal Register Notice to reopen the comment period to delist the Bald Eagle in the lower 48 States continues USFWS’ campaign of blatant disregard for law and for DNBE’s need for increased protection. USFWS obviously examined CBD’s October 6, 2004. Several key points are mentioned in the delisting proposal. USFWS chose not to lawfully address the Petition, but instead chose to include a litany of DNBE non-facts in the delisting proposal to promote its delisting agenda. Many DNBE non-facts are included in the USFWS’ February 16, 2006, delisting proposal. They merit correction:

3 AGFD 2003 (May 2, 2003).
5 CBD and Maricopa Audubon v. USFWS, CIV-06-0887-PHX-JAT
6 USFWS 2006 (February 16, 2006).
USFWS non-fact: “...there has been historically...limited habitat available...”

Correction: Only approximately one percent of Arizona’s historical, cottonwood/willow dominated riparian forests survive.

Discussion: Riparian areas in the Southwest have suffered dramatic losses from historic times. Only between five and 10 per cent survives. This demise is much worse if the riparian habitat examined is narrowed to functional cottonwood/willow habitat.

Cottonwood/willow forests were once a dominant feature of all Arizona’s major river systems. The cottonwood/willow forest is now the rarest forest type in North America.

In 1993, the AGFD found 266,786.39 riparian acres in Arizona (excluding the flight restricted Grand Canyon National Park). Cottonwood/willow forest equaled 4.2% of the total surviving 266,786.39 riparian acres. This means that only 11,205.03 cottonwood/willow total acres have survived (266,786.39 x .042).

Assuming that 266,786.39 riparian acres represent approximately 10% of the historical total of riparian habitat in Arizona, Arizona historically once had nearly 2.7 million acres of riparian habitat.

Assuming even 40% of the historic riparian habitat was cottonwood/willow instead of the “dominant” riparian habitat described by The Nature Conservancy, 40 per cent of the historic 2.7 million historic riparian acres equals 1.08 million historic cottonwood/willow forested acres. In other words, the surviving 11,205.03 acres of cottonwood/willow found by AGFD in 1993 equal only approximately 1% (11,205.03/1,080,000) of Arizona’s historical total cottonwood/willow habitat!

USFWS non-fact: “The current status of the Southwest Recovery Region indicates that population numbers are nearly equal to the estimated historical occupancy and are expanding into new watersheds.”

Correction: Two facts speak loudly for a once greater DNBE population in pre-Anglo settlement times: (1) past availability of abundant and suitable habitat, and (2) ethnographic and anthropological evidence of significant historic DNBE presence.

Discussion: The historic loss of cottonwood/willow habitat has already been addressed. With such a concept established, it follows that DNBE must have been present but never documented. This lack of documentation lies with the failure of past DNBE researchers to interview Native American elders and scholars, and with failure to review available ethnographic and anthropological evidence. This situation is complicated by mistrust resulting particularly from past abusive and unethical treatment by the U.S. Forest Service and the University of Arizona supremely motivated to construct telescopes on Mount Graham.

8 TNC 1987.
9 Ibid.
10 AGFD 1993.
11 TNC 1987; Ohmart 1995.
CBD has conducted preliminary interviews and a cursory literature review. Even with this preliminary investigation, substantial evidence exists to conclude significant and once greater DNBE population in pre-Anglo settlement times. A full, formal study is merited.

For at least 1100 years, the DNBE has played a significant role in Hopi life.13 The Hopi word for Bald Eagle is "nuvakwahu,"14 Translated literally, this means "snow eagle." They have a Kachina for the DNBE. They incorporate DNBE into their ceremony.15

The Hopi have knowledge of historic DNBE nests along the Little Colorado River and one in Hartwell Canyon.16 Language research by the University of Arizona reveals several key references including, "On the eve of the Niman ceremony our bald eagle got away (Niman-totokpe uaa – kwahu waaya); and “The bald eagle is not around Hopi country anymore” (kwahu pay Hopiiklveq pu qa waynuma).17

For at least 500 years, the DNBE has played a significant role in Apache life.18 The Apache word for Bald Eagle is "iichaacho."19 DNBE figures prominently in Apache history and traditional culture.

The Yavapai Apache relate that DNBE has “always” resided along the Verde. They are called the “river bald eagle.” The Yavapai have a mountain named after DNBE.

DNBE maintain "very special" and "important" significance in their prayers, ceremony, and "creation" stories." “It has always been that way,” is a commonly repeated expression.20

Similarly, San Carlos elders relate several place names predating reservation times throughout traditional Western Apache territory (ranging from central Arizona to western New Mexico and from the White Mountains to Northern Mexico). Traditional names refer to the mottled feathers of immature bald eagles as well as mature bald eagles.21

\textbf{USFWS non-fact:} “The bald eagle has successfully recovered throughout its range…”

\textbf{Correction:} This statement ignores the facts that (1) the DNBE population is biologically, behaviorally and ecologically isolated, (2) DNBE is already dependent, in good part, on heroic human support and management by the Arizona Bald Eagle Nestwatch Program (ABENWP), (3) the estimate of the population occupying Breeding Areas (BAs) may be overestimated owing to the fact that some individuals occupy more than one Breeding Area (BA) simultaneously, (4) the small size of the DNBE population is, in itself, problematic, (5) mortality for DNBE breeding adults is excessive, (6) DNBE subadults display an extremely high presence in breeding pairs, (7) such subadult participation in

13 Hopi elders on condition of anonymity. (October 29, 2004)
14 University of Arizona 1998.
15 Hopi elders on condition of anonymity. (October 29, 2004)
16 Hopi elders on condition of anonymity. (October 29, 2004)
17 University of Arizona 1998.
18 Apache elders from San Carlos (October 19, 2004) and Yavapai (November 1, 2004) upon condition of anonymity.
19 Apache elders from San Carlos (October 19, 2004) and Yavapai (November 1, 2004) upon condition of anonymity.; White Mountain Apache 1972.
20 Yavapai Apache elders upon condition of anonymity. (November 1, 2004)
21 San Carlos Apache elders upon condition of anonymity. (October 19, 2004)
breeding pairs is very rare elsewhere, (8) the excessively high presence of DNBE subadults in breeding pairs most likely reflects the population’s high adult mortality rates, (9) mortality for DNBE fledglings is excessive, (10) DNBE reproductive rates are low in comparison to Bald Eagle populations elsewhere, (11) the most prolific DNBE breeding areas are showing productivity declines, and most worrisome, in breeding areas along the free-flowing rivers are showing productivity declines, (12) based on AGFD survival estimates, a new population viability analysis demonstrates a high risk of extinction for this population within the next 57 and 82 years, (13) the risk of DNBE extinction for this population is undoubtedly even much higher owing to the fact that (a) threats to its continued existence are increasing, and (b) that the inadequacy of existing regulatory mechanisms is contributing to the vulnerability of the population, (14) direct human intervention by ABENWP personnel has saved 16% of all DNBE fledglings from 1983 through 1999, including in some years these efforts have been “directly responsible for saving up to 60% of a single year’s nestlings…”; (15) many more DNBE survive owing to indirect human interaction, (16) ABENWP is responsible for both direct and indirect support efforts; however, ABENWP funding is not secure without continued listing, (16) DNBE habitat faces imminent and accelerating loss of increasing amounts of habitat vital for long-term survival, (17) two of the three DNBE nests on private property are not producing young and are destined to fail, and the third faces additional increasing threat owing to impending stream dewatering, (18) the native fishery with which DNBE population evolved continues to suffer decline with one extinction, six extirpations, nine listings as Threatened or Endangered of the 20 native fish of the Gila River Basin; nine of the ten others merit greater protection, (19) toxic substances remain a problem, (20) fishing line and tackle are found in half of DNBE nests, with deaths in both adults and nestlings documented resulting from this exposure, and with increasing deaths expected, (21) global warming will increase the DNBEs challenge of living in an already extremely hostile environment, (22) global warming and drought are becoming increasing factors with heat stress already recognized as a leading cause of mortality for nestlings, and with decreased productivity already documented in areas of local drought effects, (23) eggshell thinning remains a potential problem even though the cause of documented eggshell thinning is still not known, (24) habitual violation of law and lack of agency resolve increasingly threatens DNBE protection, (25) cattle grazing continues within the riparian habitat critical to DNBE, (26) dam operations do not release water at times necessary for replenishment of riparian nest trees critical for DNBE, (27) low flying aircraft continue and will increasingly continue adversely affecting the population with flight advisories are not mandatory and are routinely ignored, (28) dewatering of remnant free-flowing rivers continues, (29) exotic fish, deadly to native fish continue to be introduced into native fish habitat, (30) from 1992 through 2004, the USFWS reviewed and approved Federal projects responsible for deaths of up to 95 DNBEs (adults, fledglings and/or nestlings) and over the 50-year life of these projects, USFWS expects, and has approved, 561 cumulative deaths, (31) thirty percent of occupied eagle nesting territories in Arizona may be adversely affected by these planned projects, and (32) USFWS has piecemealed the evaluation of these projects to avoid arriving at the obvious conclusion that, cumulatively, these projects will jeopardize the continued existence of the DNBE population.

Discussion: The statement, “The goal established in the recovery plan has been exceeded” is a lie by omission. This lie is discussed in detail in CBD’s October 6, 2004,
Petition to (1) Recognize the Biologically, Behaviorally And Ecologically Isolated Southwestern Desert Nesting Bald Eagle Population (*Haliaeetus leucocephalus*) as a Distinct Population Segment, (2) to List this Population as Endangered, (3) and to Designate Critical Habitat for this Population (Petition).22

Much has been learned in the nearly twenty years since the production of the Southwest Region Bald Eagle Recovery Plan. The Recovery Plan has never been updated to include current knowledge.

New analysis reveals fecundity and nestling survival is higher for the core Salt/Verde BAs. Prey supplementation by fish releases in the lower Salt and Verde rivers is clearly linked to increased fecundity and nestling survival for BAs in this core nesting cluster. The population may appear to be recovering under “natural” conditions, when in fact any observed recovery may result at least in part from an artificial abundance of prey, coupled with constant human intervention in the form of the Nestwatch Program. Simulations using the significantly lower fecundity and nestling survival estimates of non-supplemented BAs outside the core Salt/Verde BAs show even more rapid declines to extinction.

The most productive DNBE nests are found in mature riparian trees and snags. These are disappearing. Half of all DNBE nests ever known in Arizona have been in riparian trees and snags. The nests of the most productive BAs are found in large riparian trees.

The cohort of large cottonwoods and willows along Arizona rivers is aging and dying without replacement due to a greater than 100 year gap in recruitment. This gap was caused by dams and diversions that ended the periodic flooding necessary for seedling development, as well as pervasive riparian livestock grazing which has suppressed riparian forest recruitment for over 100 years. Bald eagles at 11 BAs (*Box Bar, Coolidge, Doka, Fort McDowell, Perkinsville, Pinto, 76, Sheep, Sycamore, Tonto,* and *Winkelmann*) rely solely on riparian trees to nest. The large old cottonwood trees in these BAs are not being replaced.

In addition, the increased storage capacity of Roosevelt Lake threatens the few nest trees remaining at the *Pinto* and *Tonto* BAs. Nest trees at both BAs will die due to inundation and dead trees will fall over time. Few or no alternate nest trees exist for the *Pinto* pair and most of the alternate trees available to the *Tonto* pair are located near housing communities or recreation areas.

USFWS’ 1994 summary of the situation remains pertinent:

“Service Action: Retain as endangered. Despite attaining all recovery plan goals, current information indicates that the population is at risk and remains in danger of extinction due to excessively low survival rates and the need for intensive management, particularly at nest sites.”23

22 CBD 2004 (October 6, 2004)
23 USFWS 1994 (November 9, 1994)
USFWS non-fact: “We disagree [The annual census of breeding areas and productivity fails to provide the demographic information that is necessary to detect population trends.]”

Correction: Annual census and productivity are no substitute for the demographic information and the population viability analysis necessary to detect meaningful population trends.

Discussion: Population surveys are a very crude measure of population health. Consequently, they have little predictive value. Increasing population numbers are often cyclical or the result of transient factors.

For DNBE, these factors include but are not limited to (1) artificial feeding of the Salt/Verde population, (2) ABENWP efforts, (3) nest tree survival, (4) habitat health, (5) climate, (6) dam management, (7) Federal activities’ mitigation measures, (8) undercounting, etc. For a population viability analysis predictive model of population change age-specific reproduction and survival are necessary.

Lifetime reproductive success is different from fledgling productivity. For example a pair of adults might produce on average one young per year, but only live for four years (on average). Each adult is consequently only producing four fledglings (two each on average) in their lifetimes. Whether or not each adult is replacing itself depends on probability each fledgling will reach reproductive age. Replacement depends on producing enough fledglings over each lifespan and providing that enough fledglings survive to reproductive age for replacement. The DNBE population viability analysis suggests that this is not happening.

The increase in the number of known BAs has been static for at least 5 years now. At best, the DNBE population is static with an appallingly low number of less than 50 adult pairs.

As we state in the Petition’s PVA, “a large pool of undiscovered and thus unbanded nestlings could have been present in earlier surveys. This latter explanation is the most likely of the three and suggests that BAs may have been undercounted in earlier years.” and “There is little doubt that the rise shown in Fig 1 represents real upward growth of the DNBE population since 1975, however the full extent of real growth remains uncertain as earlier surveys may have missed occupied BAs.” Doubts remain as to the thoroughness of earlier surveys. The DNBE population has admittedly increased but we cannot be too certain by how much. The available productivity and survival information do not predict population growth. In most simulation scenarios, indicate population decline to extinction.

USFWS non-fact: “We are not aware of threats specific to any part of the eagle’s range, including the Southwest…”

Correction/Discussion: This does not pass the “straight-face test.” Specific threats are documented in CBD’s October 6, 2004, Petition. Yearly ABENWP reports cited in the Petition and in the Administrative Record document specific threats to individual BAs. Multiple past USFWS Biological Opinions specifically address specific threats to DNBE
by Federal activities. See the attached new 2006, CBD DNBE Population Viability Analysis.24

USFWS non-fact: “…Even in the Southwest region, where there has historically and is currently limited available habitat, the bald eagle has exceeded the reclassification goals outlined in the recovery plan. Therefore, we need not at this time analyze whether any particular geographic area would constitute a DPS pursuant to our DPS policy.”

Correction/Discussion: We have already addressed the non-fact of “historically limited habitat” and the irrelevant and non-applicability of the reclassification goals outlined in the 1982 recovery plan. The fact that the DNBE fulfills the historic, biological and legal definition of a Distinct Population Segment has also been discussed and documented extensively in our October 6, 2004, Petition, in USFWS documents and in USFWS Biological Opinions regarding DNBE.

USFWS non-fact: “We will continue to work with other involved agencies to assure continuation of existing management and protection regimens, which we believe will adequately protect the current nesting population.”

Correction/Discussion: Delisting removes all meaningful habitat protection at a time of increasing threat to habitat. Delisting ignores the current and historical antipathy of all involved agencies towards habitat protection. This antipathy has become particularly acute with the ascension of the Bush Administration. No meaningful habitat protection has occurred since January 2000 without some sort of legal action.

USFWS non-fact: “The Service has issued a number of biological opinions that document the perilous status of southwestern bald eagles…the potential effects to the southwestern or any of the other four populations are considered in terms of whether they appreciably reduce the likelihood of both survival and recovery of the bald eagle throughout the lower 48 states, not solely for the geographic area in which the impacts may occur…”

Correction/Discussion: This is a lie. USFWS Biological Opinions and supporting documents in the Southwest have long reflected the fact that the DNBE population is a DPS based on discreteness, importance to the species (particularly its unique adaptation to the desert environment and significant portion of the species’ range), and status (recognizing the precarious nature of its isolation, population dynamics and increasing habitat threats). The USFWS Biological Opinions in the Southwest recognize the threats to DNBE specifically. They do not discuss or examine its status with respect to the status elsewhere.

USFWS non-fact: “After removal from the list of species protected by the ESA, the bald eagle and its nest and eggs will remain protected…”

24 CBD 2006 (June 19, 2006).
Correction/Discussion: This is a lie by omission. The sentence should read “will remain INADEQUATELY protected WITHOUT ANY HABITAT PROTECTION.” This fact has been discussed in detail in CBD’s October 6, 2004, Petition.

USFWS’ new citation of the Clean Water Act as a protection for the Bald Eagle, particularly for the DNBE, is a new cynical lie. The Bush Administration has and continues to actively fight against Clean Water Act applicability for the protection of habitat for Endangered Species. The Environmental Protection Agency (EPA) and the Army Corps of Engineers (ACOE) routinely refuse to admit to effects of their actions of Endangered Species and Critical Habitat. The most outrageous ongoing example is the case, Defenders of Wildlife, et al. v. EPA, et al. (Nos. 03-7149, 03-72894) involving Huachuca Water Umbel and the San Pedro River. In this case, the Bush Administration is even appealing to the U.S. Supreme Court findings of obvious CWA violations to avoid protecting Endangered Species and Critical Habitat in spite of obvious jeopardy effects.

USFWS non-fact: “We have determined that none of these existing or potential threats, either alone or in combination with others, are likely to cause the bald eagle to become in danger of extinction within the foreseeable future throughout all or a significant portion of its range.”

Correction/Discussion: For more than 20 years, USFWS has recognized the fact that the Southwest represents a significant portion of the Bald Eagle range.25 It follows logically then that loss of the Desert Nesting population would result in a significant gap in the range of the Bald Eagle.

USFWS obviously ignores our October 6, 2004, Petition, its own USFWS memos, Biological Opinions and the latest PVAs. The threats to habitat are intense and are increasing. The Sonoran desert represents a significant and critical portion of the range of the Bald Eagle.

If you have further questions, please contact Robin Silver, M.D., Board Chair, Center for Biological Diversity, P.O. Box 39629, Phoenix, AZ 85069-9629, by mail; by phone: 602.246.4170, or by Email: rsilver@biologicaldiversity.org.

Sincerely,

Robin Silver, M.D.
Board Chair

References:

AGFD 1993. Arizona Riparian Inventory and Mapping Project, Arizona Game and Fish Department, Phoenix, December 1, 1993.

AGFD 1994a. Inter-office Memo; from Susan Sferra, Nongame Birds Program Manager; to Terry Johnson, Nongame Branch Chief; Subject: Bald Eagle: threatened versus endangered; October 24, 1994.

AGFD 1999b. Delisting of the Bald Eagle, Arizona Game and Fish Department, September 23, 1999.

CBD 2004 (October 6, 2004). PETITION to (1) Recognize the Biologically, Behaviorally And Ecologically Isolated Southwestern Desert Nesting Bald Eagle Population (Haliaeetus
leucocephalus) as a Distinct Population Segment, (2) to List this Population as Endangered, (3) and to Designate Critical Habitat for this Population; Center for Biological Diversity, Dr. Robin Silver, Maricopa Audubon Society, Arizona Audubon Council, October 6, 2004.

Dougherty 1993. “STAR WHORES: The ruthless pursuit of astronomical sums of cash and scientific excellence,”: Information documenting the tribe’s [San Carlos Apaches’] spiritual relationship the mountain has been in the Arizona State Museum on the UofA campus since 1969, but was not included in UofA’s environmental impact statements...The information was even ignored by former Coronado National Forest supervisor Robert Tippeconnic, a Commanche who was raised on the White Mountain Apache Reservation. Tippeconnic, who now works in Washington, D.C., as the U.S. Forest Service’s national liaison with Indian tribes, says he knew many traditional Apaches considered Mount Graham to be sacred, but would be reluctant to describe their feelings to non-Indians. Yet, during planning, Tippeconnic’s office made no effort to solicit the views of San Carlos Apaches, beyond writing a letter to the tribal council to announce the proposed development.” John Dougherty, Phoenix New Times, June 13, 1993.

SWCBD 1999. Correspondence to Dr. Jody Gustitus Millar, Bald Eagle Recovery Coordinator, U.S. Fish and Wildlife Service, 4469-48th Avenue Court, Rock Island, IL 61201; RE: “The US Fish and Wildlife Service (USFWS) proposal to remove the Southwestern Desert Nesting Bald Eagle from the Endangered Species Act (ESA) List of Threatened and Endangered Species is not based on science, policy or law. The proposal is arbitrary and capricious.”; from Robin Silver, M.D., Conservation Chair, SWCBD, PO Box 39629, Phoenix, AZ 85069-9382; October 4, 1999.

U.S. Forest Service 1996. Memo: To: Pat [Spoerl]; From: James A. McDonald, Forest Archeologist; Subject: Pinaleno Ethnographic Study: “…an ethnographic study is needed.”; Coronado National Forest, USDA Forest Service, Tucson, Arizona; April 8, 1996.

POPULATION VIABILITY ANALYSIS:
DESERT-NESTING BALD EAGLE

Martin Taylor, Ph.D.,
Conservation Biologist,

Robin Silver, M.D.,
Board Chair,

Center for Biological Diversity
June 19, 2006

INTRODUCTION

In 1999, the U.S. Fish and Wildlife Service (FWS) proposed to delist the bald eagle Haliaeetus leucocephalus nationwide, citing growth of the population throughout the United States, and reduction of threats (64 FR 36454).

The bald eagle is the national symbol of the United States. It is a fish eating eagle that nests in streamside trees and, in Arizona, ledges on canyon walls. Destruction and dewatering of streams, persecution and poisoning at baits set by ranchers resulted in significant decline of bald eagles following European arrival particularly in the arid Western states.

In the 1960s, the widespread use of DDT resulted in further declines, even after a total ban on DDT in 1972. DDT is a persistent bio-accumulating pesticide whose breakdown products interfere with eggshell production in birds.

Originally listed under the Endangered Species Preservation Act in 1967, the bald eagle was transferred to the new endangered species list in 1973 when the Endangered Species Act 1973 (ESA) came into force.

FWS reported an increase in the numbers of occupied "breeding areas" (BAs) observed in the lower 48 states following the ban on DDT and the adoption of a recovery plans from 1982-1986. In 1963 National Audubon Society reported 417 active nests with 0.59 young per nest. In 1994, a collection of agencies reported 4,450 occupied BAs with 1.16 young per occupied BA. On the basis of this data, FWS downlisted the bald eagle to "threatened" in 1995 (60 FR 35999).

The "delisting goals" specify the following criteria for the population to be considered recovered in the southwestern region (64 FR 36458):

1. produce at least 10-12 young per year over 5 years and
2. have expanded to river systems other than the Verde and Salt,

In the same recovery rule, FWS noted the presence of 40 occupied BAs producing 25 young (0.63/occupied BA) in 1998 (36 in AZ, 4 in NM), and that breeding areas have been discovered outside the Verde and Salt in Gila, Bill Williams, San Carlos and Rio Grande river systems.
However they also note the risk that delisting could undermine the Nestwatch Program, which was responsible for "at least 15 percent of the bald eagle production" by guarding nests and rescuing 48 eagles or eggs from disturbance and entanglement in fishing tackle.

The FWS in its delisting proposal recognized only "one population of bald eagles in the lower 48 states" (64 FR 36458).

In this paper we examine the FWS claims that the Desert Nesting Bald Eagle (DNBE) population in the southwestern region (1) is just one part of a freely interbreeding continental population and (2) has recovered to the point that delisting is justified.

In considering delisting, we question that the original FWS delisting criteria are adequate. Instead we develop a stochastic model of population dynamics to determine extinction time distributions based on the available range of estimates of life table parameters. Such population viability analysis may be more informative than simple criteria to determine if recovery has been achieved.

We find that:

(1) the DNBE population qualifies for designation as a Distinct Population Segment under the Endangered Species Act, and

(2) that even with retention on the endangered species list, current life table data suggest that DNBE population is facing an appreciable risk of extinction in the near future.

This together with other empirical work suggests that far from removing the DNBE population from the endangered list, there is a clear need to retain and enhance protection for the DNBE population under the ESA.

DESERT NESTING BALD EAGLES REPRESENT A DISTINCT POPULATION SEGMENT

The assumption that all bald eagles in the lower 48 states form a single interbreeding population is not supported by available evidence.

Indeed, the principal agency responsible for data collection on the DNBE population, the Arizona Game and Fish Department (AGFD) treats the DNBE as a closed population: "Arizona supports a biologically isolated population of desert nesting Bald Eagles" (AGFD 1999).

DNBEs are smaller that bald eagles elsewhere. Average weight of males in AZ is 3.3kg compared with 4.1kg in CA and 4.7 kg in AK. AZ females average 4.5kg compared with 5.1kg in CA and 5.8kg in AK (Hunt et al. 1992). Arizona bald eagles are much smaller than California eagles of equivalent latitude, which does not support the hypothesis of a latitudinal gradient in size.

Desert Nesting Bald Eagles also show two adaptations to their desert habitat: early breeding and cliff nesting.

In order to adapt to high summer temperatures and to schedule breeding cycles appropriately for the spawning of native fish, particularly suckers, DNBEs breed in autumn, nest in winter and fledge in the late spring. Nest initiation occurs from November to February. Up to three eggs are laid and incubated from December to March. The eggs hatch after about 35 days, from February through April. Nestlings are in the nest for 12 weeks until May or June (AGFD 1999, Gerrard and Bortoletti 1988, Hunt et al. 1992, Stalmaster 1987).

Unlike Bald Eagles elsewhere in the lower 48 states, Desert Nesting Bald Eagles utilize cliff nest sites (AGFD 1994). Of 111 known nests, 53 (48%) were found on cliffs by Hunt et al. (1992).

Gene flow between DNBE and neighboring populations is probably less than one individual per generation. From 1983 to 2006 (23 years) 83 recognized individuals engaged in breeding activity and
participated in 448 nesting attempts. (AGFD 2006) Only one of these individuals came from outside Arizona. From 1977 through 1999 (22 years), 256 nestlings have been banded but only one individual emigrated to California (AGFD 1999). This represents an extremely low rate of gene flow with neighboring populations, significantly less than one migrant per 8 years and thus sufficient to result in considerable genetic divergence and allele fixation by drift (Wright 1962).

BAs at the margins of the range, such as the isolated Luna BA on the New Mexico border, occupied by the only known immigrant to the DNBE population, from Texas, show low breeding success and offspring have minimally interbred with others in the population.

Patrophily is general for Bald eagles (Mabie et al. 1994). Hunt et al. (1992) surveyed band IDs for nine populations and found only two known outbreeding events, breeding at 331 km and 418 km respectively from natal site.

FWS based the delisting decision in part on a claim that the DNBE population is not a "distinct population segment" citing as evidence two genetic studies in Hunt et al. (1992). However, one of these was statistically inadequate to detect differentiation and the second actually reported significant differentiation.

One study used only five allozyme loci with low sample sizes, and was unable to resolve AZ from other populations (MD, FL, WA, CA, TX, MN).

DNA fingerprinting analysis isolated population specific DNA markers, and suggested that CA and FL samples were closer to each other than to AZ (Hunt et al. 1992).

Less than fifty nesting pairs of Southwestern Desert Nesting Bald Eagles survive today: roughly 40 in AZ, 4 in UT, 4 in NM and 3 in Sonora, Mexico. Considering this is an isolated population, it meets the IUCN criteria for "critically endangered" on the basis of small population size and vulnerability to stochastic extinction (IUCN 2004).

For purposes of population modeling, the DNBEs were treated as a closed population not demographically linked to other populations. This assumption is strongly supported by the evidence.

POPULATION VIABILITY ANALYSIS (PVA)

Are stochastic extinction time models appropriate and reliable?

However these criticisms apply only to the extent that data are poor and models do not incorporate uncertainty. Brook et al. (2002) dismiss the "alternatives" advocated by critics of PVA, noting that correctly applied, PVAs must account for all sources of uncertainty.

It is common to cite λ (lambda) the deterministic intrinsic rate of population increase as calculated from available life table data. Lambda is equal to 1 for a stable population and below 1 for a declining population. The interpretation of lambda is difficult however, without some measures of precision and uncertainty. Even for lambda of one, high stochastic variance in vital rates can lead to appreciable risk of extinction.

Extinction time distributions from stochastic population models are the best available means to translate all the uncertainties and variabilities in vital rates into a range of population outcomes.

All available data on numbers of known BAs, numbers of occupied BAs and numbers of fledglings since 1970 as well as survival estimates were taken from records of the Arizona Game and Fish Department and other studies.
Life table (fecundity and survival) parameter estimates were entered into the Vortex version 9 model (www.vortex9.org) to produce corresponding ranges of extinction time and extinction probability estimates.

Adult numbers

AGFD nest survey reports (1991-2005) describe survey areas. However it remains unclear what proportion of all potential habitat was searched intensively. It is unclear how intensively the same areas were surveyed in the past and thus we have no reliable estimate of the probability that a breeding or occupied nest was overlooked in the past due to differences in survey effort or observer experience.

Different groups and agencies were involved in the surveys, with consequent differences in observer experience. Observer experience is also expected to improve with time, leading to increasing detections with time.

The searching protocol was not random nor unbiased since searchers naturally tend to search more in areas that bald eagles have been known to occupy in the past. The inevitably leads to a better search coverage with each passing year as new BAs are discovered.

Past undercounting of BAs

It is probable that some BAs first "discovered" in a particular year could have been present and even occupied in previous years. Canaca et al (2004) underscored the ephemeral nature of the evidence for a BAs existence by reporting that 18 nests in known BAs had disappeared by 2003.

Additional evidence that earlier BA counts may not be accurate come from the fact that between 1987-2003 only 83% of fledglings were banded, whereas in the same period, only 59.6% of breeding adults were banded (AGFD unpubl. data). There are three possible explanations for this discrepancy.

First, unbanded nestlings may suffer less mortality. Banding effects on bird mortalities have been recorded before, however most differences are minor and so this is an unlikely explanation.

Second, immigration could account for the discrepancy. This is also an unlikely explanation as bald eagles in adjacent areas are also banded at high frequencies and yet the only recorded immigration event has been from Texas to the Luna BA which is on the edge of DNBE range.

Finally, a large pool of undiscovered and thus unbanded nestlings could have been present in earlier surveys. This latter explanation is the most likely of the three and suggests that BAs may have been undercounted in earlier years.

The first widespread survey in 1975 estimated that 90% of potential habitat in Arizona, New Mexico and Colorado River had been surveyed, but again without estimation of probabilities of missed breeding areas or BAs (Rubink and Podborny 1976). This survey found 21 BAs, 18 adults, and 5 fledglings.

By 2001 the number of known BAs had arrived at the current level of 47.

In the 2005 survey, 39 of 47 known BAs were occupied or active. There were 78 or more adults and 38 fledglings (Jacobsen, K.V., J.S. Canaca, J.T. Driscoll, 2005.).

For some "occupied" but non-breeding BAs in some years, only one adult was observed. In others no adults were observed since it is sufficient to observe nest rebuilding to score a nest as "occupied." In all such cases the lower estimate of adult number was set to 1. Otherwise for all BAs occupied or breeding the upper estimate of adult number was 2.

Fig.1 shows the high and low estimates of adult numbers at BAs accounting for this source of uncertainty. The high estimate is simply twice the number of occupied or active BAs.
There is little doubt that the rise shown in Fig 1 represents real upward growth of the DNBE population since 1975, however the full extent of real growth remains uncertain as earlier surveys may have missed occupied BAs.

Undercounting of adults

The "high" estimates shown in Fig 1 are only based on counting two adults at each occupied or active breeding area. Even assuming that surveys for BAs were exhaustive, additional uncertainty in estimating adult numbers comes from the possible presence of "floaters", non breeding adults undetected by surveys of BAs.

Such under-estimation of adult numbers results in over-estimation of fecundity, which is estimated as the number of nestlings per adult female.

However, overestimation of fecundity through undercounting of adults may be compensated for by underestimation of adult survival. If banded "floaters" were presumed dead when never resighted as adults, survival to adult stage is underestimated.

Adults move between BAs. Of 1510 total observations of occupied or breeding BAs, 39 involved a confirmed replacement of a male at a BA, and 37 a confirmed replacement of a female at a BA. As eagles age they are likely to be replaced by younger breeding adults at a BA. However not all replacements clearly relate to aging of incumbents. On three occasions, an older male actually replaced a younger male at a BA. Such movements between BAs in different years do not affect the annual adult count. If adults move between BAs in the same year however, there is potential for double counting. There is no known instance of a positively identified individual appearing at more than one BA in the same year, and so double counting was considered to be a negligible source of uncertainty.

Adult female pool

Specific IDs of sexes were lacking in most cases. The total adult female population was simply estimated as the number of occupied or active BAs, and a 50% adult sex ratio assumed. As discussed above, possible undercounting of BAs in earlier years and the existence of an unobserved adult "floater" population means that this underestimates actual adult female population, and so overestimates fecundity.

Fecundity

For the purposes of population modeling, we assumed that "birth" was represented by number of nestlings rather than eggs laid, as counts of numbers of eggs are less accurate than those of nestlings.

Nestling counts are also more useful than using fledgling counts. Most BAs except in core areas around the Salt-Verde confluence, were monitored by overflights. Nestlings are scored as having fledged if they reach 8 weeks of age (AGFD unpubl. data). This may overestimate actual fledging, as nestlings scored as having fledged may have actually died in the nest after the observation.

However, nestling counts also carry uncertainty. This uncertainty was captured by defining a range between upper and lower limits. If the nestling number was reported as "unknown" the lower limit was set to the known number of fledglings while the upper limit was set to the high estimate of egg number. (eg if eggs were scored 2+, upper limit was set to 3 nestlings).
If nestling number was unknown, the lower limit was set to fledgling number and upper limit to the high egg estimate.

For nestling scores of 1+ or 2+, the upper limits were set to 2 and 3 respectively, and lower limits to 1 or 2 or fledgling number if greater.

Effect of prey supplementation

We hypothesized that the lower Verde and Salt BAs would have artificially higher productivity as a result of stocking with exotic rainbow trout and release of native fish captured from irrigation canals into this area by the Salt River Project (Canaca et al 2004).

To test this "prey supplementation" hypothesis, we divided BAs into 2 groups, those on the lower Salt River or lower Verde River up to Horseshoe Dam, and those outside this "Salt/Verde cluster."

There were significant differences in fecundity and nestling survival between these two groups of BAs.

There was considerable fluctuation but no evident time trend in fecundity estimates. Fecundity in the Salt Verde cluster may have increased slightly in recent years (Fig 2). However both low and high estimates were significantly different between the Salt/Verde BA cluster and outside this cluster (paired t-tests, P=0.001, P=0.004 respectively). The mean fecundity (low estimate) for Salt/Verde cluster BAs was 1.24 (SD 0.43) and for BAs outside the cluster 39% lower at 0.89 (0.41) nestlings per adult female. The mean fecundity (high estimate) for Salt/Verde cluster was 1.46 (SD 0.43) and outside the cluster 1.12 (0.48) nestlings per adult female.

For population modeling, fecundity estimates are expressed as a distribution of proportions of females producing 0,1,2 or 3 nestlings a season. The low estimate of fecundity outside the Salt Verde cluster was used as the lower limit of the fecundity range. The upper limit of the range was the high estimate of nestlings/female for the entire population. The median fecundity estimate was taken to be the average of these range limits (Table 1).

Nestling to fledgling survival

We derived low and high estimates of survival from nestling to fledgling (Snest) using high and low estimates of nestling numbers respectively. Under the supplementation hypothesis, we expected survival inside the Salt/Verde cluster to be higher than outside. Both low and high estimates were significantly different between Salt/Verde cluster and non-cluster BAs (paired t-tests, P=0.005, P=0.015 respectively).
Neither high nor low estimates of $Snest$ for BAs in the Salt/Verde cluster declined significantly in linear regressions on year ($P>0.05$).

For the non-cluster BAs however, the linear regression for the low survival estimate on year was highly significant at $P<0.001$ with a declining trend. The regression for the high estimate on year was not significant (Fig 3).

Accordingly the ten years 1996-2005 for the non-cluster BAs were used to derive a lower limit of $Snest$ for modeling purposes of 49.5% (ESD 3.9%). Environmental standard deviations (ESD) were calculated by the method of Akçakaya (2002).

The upper limit was taken to be the high estimate $Snest$ for the entire period, for all BAs of 80.9% (ESD 15.3%).

Post-fledging juvenile and adult survival

We did not attempt to derive independent estimates for post-fledging survival because we did not have the complete record of bandings and resightings.

Juvenile mortality was unusually high. From 1987 to 1999, there were 214 fledglings. However, 97 or 41% of this number of fledglings were subsequently found dead (AGFD 1999). Hence fledgling to adult survival was no more than 59%.

Arizona Game and Fish Department estimated stage specific survival from resightings of banded nestlings using the program MARK (AGFD unpubl. data).

The AGFD best fitting model estimated survival from fledging to age 4 (maturity) at 0.28 (0.147-0.466, 95% CI).

For adults, annual survival was estimated at 0.877 (0.785-0.936, 95% CI) (AGFD unpubl.data).

A phenomenon peculiar to DNBEs that corroborates the high adult mortality estimates obtained by AGFD is the unusually high proportion of sub-adults attempting to breed.

From 1987 to 1990, Hunt et al. (1992) counted 39 individuals recruited into the breeding pool, of which 61.5% ($n=24$) were in subadult plumage. From 1991 to 1998, of 66 such recruits, 29% ($n=19$) were in subadult plumage (AGFD unpubl. data). No subadult breeding has produced fledglings. Outside Arizona, the known incidence of subadults attempting to breed is rare (0.02% according to Hunt et al. 1992). AGFD suggests that this phenomenon results from "an insufficiency of adults in the floating segment" of the population (AGFD 1994), most likely due to high adult mortality.
Although male survival is lower than female survival, the difference is not statistically significant (AGFD unpubl. data). Observed nestling sex ratio determined during banding averaged 65% males (AGFD unpubl. data). Thus male mortality would have to be higher than females to result in a 50:50 adult sex ratio at breeding areas. To simplify modeling, a 50:50 sex ratio at birth and equal male and female age specific mortalities were assumed. Departure from this assumption does not greatly affect model outcomes.

Initial population size, \(K \)

Initial population size was set to 175. The high estimate of adults and young was 137 in 2005. The unknown number of juveniles, sub adults and "floaters" was guessed to be about 38.

Simulations were all started from simulated stable age/sex distribution, because actual distribution was unknown.

Carrying capacity was set arbitrarily to double the presumed initial population size. In general if fecundity and survival are sufficient to get the population to grow toward carrying capacity, risk of extinction is low, except for small carrying capacities, when stochastic extinction risk may be considerable.

Simulations

Ten simulations of the Vortex (www.vortex9.org) using parameter combinations that bracketed the range of uncertainty in the available data and life table estimates (Table 1).

Survival from nestling to age 1 was calculated as the product of two survival estimates, the survival from nestling to fledgling calculated in this paper, and the annual survival from fledgling to age 1 as estimated by AGFD. Environmental Standard Deviations of juvenile and adult mortalities were arbitrarily set to 5%, as ESDs were not estimated by AGFD.

No catastrophes, declines in carrying capacity or inbreeding depression were included in the simulations. These are all expected to aggravate extinction risk.

Each scenario was simulated 100 times for 200 years.

The scenarios and results are shown in Table 1 and Fig 4:

1. The median scenario used the average of upper and lower limits of fecundity and nestling survival as calculated above, and the AGFD median estimates of juvenile and adult survival. Median time to extinction was 75 years (Fig. 4, Table 1).
2. The early maturity scenario shortened age at maturity to 4 years, but was otherwise the same as median scenario. Median extinction time increased by 12 years.
3. The "Low fec." scenario used the lower limit of fecundity as calculated above, but otherwise was the same as Median scenario. Median extinction time decreased slightly relative to the Median scenario.

4. The "Low Snest" scenario used the lower limit of nestling survival S_{nest} as calculated above, but otherwise was the same as Median scenario. Median extinction time decreased substantially relative to the Median scenario.

5. The "Low Sjuv" scenario used the lower 95% confidence limit of juvenile survival S_{juv} as calculated by AGFD, but otherwise was the same as Median scenario. Median extinction time decreased by 97% relative to the Median scenario.

6. The "Low Sad" scenario used the lower 95% confidence limit of adult survival S_{ad} as calculated by AGFD, but otherwise was the same as Median scenario. Median extinction time was more than halved relative to the Median scenario.

7. The "High fec." scenario used the upper limit of fecundity as calculated above, but otherwise was the same as Median scenario. Median extinction time increased slightly relative to the Median scenario. However all simulated populations still went extinct within 200 years.

8. The "High Snest" scenario used the upper limit of nestling survival as calculated above, but otherwise was the same as Median scenario. Median extinction time increased by 24% relative to the Median scenario.

9. The "High Sjuv" scenario used the upper 95% confidence limit of juvenile survival as calculated by AGFD, but otherwise was the same as Median scenario. Extinction risk within 200 years declined significantly relative to Median scenario from 100% to 23%.

10. The "High Sad" scenario used the upper 95% confidence limit of adult survival as calculated by AGFD, but otherwise was the same as Median scenario. Extinction risk within 200 years declined significantly relative to Median scenario from 100% to 11% (Fig 4).

Results for scenarios with all low or all high estimates are not shown. It should be clear that setting all parameters to their low limits resulted in very rapid extinction, while setting all parameters to their upper limits resulted in growth to carrying capacity with little risk of extinction.

In summary, simulated populations declined to extinction within 100 years on the basis of the median values of known life table parameters estimated in this paper for fecundity (fec) and nestling survival (S_{nest}) or by AGFD for post-fledging juvenile (S_{juv}) and adult survival (S_{ad}). However, parameter space was quite broad. Populations could persist indefinitely at the upper 95% confidence limit of the parameter space for juvenile and adult survival. Juvenile and adult survival were the most critical parameters for the population model having the greatest effect on extinction risk, confirming qualitative arguments by Stalmaster (1987) among others. However, these parameters are expected to be more important simply because their influence extends across so many year classes. Other modeling approaches such as Bayesian estimation may be better able to reconcile all data and incorporate parameter distributions explicitly. Vortex models however are more readily understood and serve at least to bracket the range of variability in extinction outcomes. Clearly, more precise unbiased estimates of juvenile and adult survival would be desirable.
TABLE 1. Vortex simulations, parameters and results. (All simulations were run 100 times for 200 model years. Blank cells indicate parameters same as median scenario. * indicates average of time to extinction for simulated populations going extinct.)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Median</th>
<th>Early maturity</th>
<th>Low fec.</th>
<th>Low Snest</th>
<th>Low Sjuv</th>
<th>Low Sad</th>
<th>High fec.</th>
<th>High Snest</th>
<th>High Sjuv</th>
<th>High Sad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population initial</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age females mature</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age males mature</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. breeding age</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% females success</td>
<td>62.5%</td>
<td>53.5%</td>
<td></td>
<td>71.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV in % success</td>
<td>20.0%</td>
<td>19.0%</td>
<td></td>
<td>8.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% w 1 nestlings</td>
<td>34.5%</td>
<td>39.4%</td>
<td></td>
<td>29.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% w 2 nestlings</td>
<td>58.6%</td>
<td>54.6%</td>
<td></td>
<td>62.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% w 3 nestlings</td>
<td>7.0%</td>
<td>6.0%</td>
<td></td>
<td>8.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surv. nesting</td>
<td>65.2%</td>
<td>49.5%</td>
<td>65.2%</td>
<td>80.9%</td>
<td>65.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surv. fledg->age4</td>
<td>28.0%</td>
<td>28.0%</td>
<td>14.7%</td>
<td>28.0%</td>
<td>46.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality Nestling->1</td>
<td>52.6%</td>
<td>64.0%</td>
<td>59.6%</td>
<td>41.2%</td>
<td>46.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV in Mort N->1</td>
<td>15.0%</td>
<td>4.0%</td>
<td>15.0%</td>
<td>15.0%</td>
<td>15.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality 1->2</td>
<td>27.3%</td>
<td>38.1%</td>
<td>17.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV in Mort 1->2</td>
<td>5.0%</td>
<td>5.0%</td>
<td>5.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality 2->3</td>
<td>27.3%</td>
<td>38.1%</td>
<td>17.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV in Mort 2->3</td>
<td>5.0%</td>
<td>5.0%</td>
<td>5.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality 3->4</td>
<td>27.3%</td>
<td>38.1%</td>
<td>17.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV in Mort 3->4</td>
<td>5.0%</td>
<td>5.0%</td>
<td>5.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality 4->5+</td>
<td>12.3%</td>
<td>21.5%</td>
<td>6.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV in Mort 4->5+</td>
<td>5.0%</td>
<td>5.0%</td>
<td>5.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>lambda</th>
<th>0.962</th>
<th>0.973</th>
<th>0.947</th>
<th>0.94</th>
<th>0.914</th>
<th>0.897</th>
<th>0.976</th>
<th>0.98</th>
<th>1.007</th>
<th>1.006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median years to extinction</td>
<td>75</td>
<td>87</td>
<td>61</td>
<td>48</td>
<td>38</td>
<td>31</td>
<td>87</td>
<td>93</td>
<td>129*</td>
<td>150*</td>
</tr>
<tr>
<td>% extinct 200 yrs</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>99</td>
<td>23</td>
<td>11</td>
<td>100</td>
<td>80</td>
</tr>
</tbody>
</table>

ASSESSMENT OF THREATS

The foregoing analysis was based on the assumption of indefinite continuation of the same environmental conditions that have prevailed in recent years. Available evidence brings this assumption into question. In particular, the lower estimate of nestling survival outside of the supplemented Salt/Verde cluster BAs was found to decline significantly with time for reasons yet to be determined.

Although some threats may be attenuating slowly with time such as DDT residues, others are escalating as a result of urban development and growing human population in the greater Phoenix area in the heart of DNBE historical habitat.

We find that the assessment of threats made by FWS in their proposal to delist bald eagles needs reconsideration for the DNBES. Some issues of importance were not considered in depth by the FWS when making their proposal (Table 3).
Decline in habitat extent and quality

Habitat conditions have declined and are expected to decline further in the foreseeable future. Critical habitat has been shown to be of significant benefit for listed species by Taylor et al (2005). Bald eagles were never given critical habitat by the FWS.

The southwest has already lost more than 90% of historic riparian habitat (Lofgren et al. 1990). The loss of riparian habitat is certain to worsen owing to increasing urban development, dewatering of streams via groundwater pumping, dams and diversions, livestock grazing, and lack of regular flooding needed to rejuvenate vegetation and native fish habitat.

Private property

An additional problem is that some of the key riparian habitat for DNBEs is on private hands and therefore subject to destruction for urban development or agriculture.

“…Property has recently been sold or is planning to be sold in Camp Verde and Perkinsville BAs. Current owners of the Perkinsville have refused ground access to monitor the BA. The Winkelman BA is surrounded by housing, recreation, and industry.” (AGFD 1999)

Decline of native fish

Native fish species in the river systems have declined precipitously and have been supplanted by non-natives. Hunt et al. (1992) cited fish diversity as a crucial feature of a suitable breeding location and native suckers as an important prey item for bald eagles. Surveys have shown that native fish have declined on the upper Salt River (AGFD 1999).

From 1967 to 1991, 17 species of southwestern fish were listed as threatened or endangered by FWS. Only four were reported to have improving population trends in 2000 by the FWS (USFWS 2003).

DNBE productivity at the Verde/Salt confluence appears to have been artificially boosted by the releases of native fish found in Salt River Project canals and AGFD releases of exotic rainbow trout for recreational fishers (Canaca et al 2004, p.8).

Conversely, this demonstrates that natural prey productivity elsewhere is insufficient to sustain the DNBE population.

Lack of nest tree recruitment

Half of all DNBE nests ever known in Arizona have been in riparian trees and snags (Driscoll 1999). The nests of the most productive BAs are found in large riparian trees. The cohort of large cottonwoods and willows along Arizona rivers is aging and dying without replacement due to a greater than 100 year gap in recruitment. This gap was caused by dams and diversions that ended the periodic flooding necessary for seedling development, as well as pervasive livestock grazing along Arizona waterways which has suppressed riparian forest recruitment for over 100 years. Bald eagles at 11 BAs (Box Bar, Coolidge, Doka, Fort McDowell, Perkinsville, Pinto, 76, Sheep, Sycamore, Tonto, and Winkelman) rely solely on riparian trees to nest. The large old cottonwood trees in these BAs are not being replaced (AGFD 1999).

Additionally, the increased storage capacity of Roosevelt Lake threatens the few nest trees remaining at the Pinto and Tonto BAs. Nest trees at both BAs will die due to inundation and dead trees will fall over time. Few or no alternate nest trees exist for the Pinto pair and most of the alternate trees available to the Tonto pair are located near housing communities or recreation areas (AGFD 1999).
Urban sprawl

The FWS recognizes that growth along the upper and middle Verde River will increase about 150% by 2040, leading to "increased contamination, increased wildfires, and increased alteration of the watershed and hydrologic regime". Increased recreational visitation in the Verde River riparian habitat was predicted to result in:

"[b]ank compaction and erosion, channel morphology changes, riparian vegetation suppression and loss, increased pollution and trash, construction of picnicking and other recreational facilities with the riparian corridor, and many other adverse impacts will destroy or adversely alter razorback sucker habitat and habitat for bald eagle prey species. Bald eagle will be subjected to increasing disturbance effects and may have increased problems with entanglement in monofilament fishing line…” (USFWS 1998).

Along the lower Verde and Salt Rivers lies the huge metropolitan sprawl of Phoenix and satellite cities. Maricopa County's human population is expected to double to more than six million by 2030 (AZ Republic 3/25/98).

Proposed and ongoing developments are affecting the Blue Point, Box Bar, Pleasant, Sheep, and Tonto BAS:

- A turnaround for river-tubers (recreation involving floating downstream in an inflated tire inner tube) below Bulldog Cliffs near the Blue Point BA.
- A 360-unit housing development and 18-hole golf course 1.0 miles from the Box Bar BA.
- The City of Peoria annexed the north shore of Lake Pleasant to develop lakeside resorts.
- Continued housing, road, and business developments along lower Tonto Creek, near the Sheep and Tonto BAS (AGFD 1999).
- Campground developments at Roosevelt Lake by the US Forest Service, predicted to result in the loss of 12 nests and eight nestlings or eggs in next 50 years and nest productivity drops from 50-80% to 35% (USFWS 1993).
- Agricultural expansion near the Fort McDowell BA was followed by a 45% fall in nest productivity after 1987 (USFWS 1992a).

Stream dewatering

Dewatering of the middle portion of the Verde River is worsening due to agriculture and the growing population of Cottonwood and Camp Verde. Base flows, or stream flow during the driest times of the year, are now reduced to that of a small irrigation ditch.

The FWS recognizes groundwater drawdown as a significant impact on Verde River flows:

"...The Verde River base flow is provided by groundwater discharge from the alluvium and Verde Formation (ADWR, 1994∗).

Thus, any withdrawal from either of those portions of the aquifer is expected to eventually deplete Verde River base flows. Groundwater pumping in Arizona has been repeatedly demonstrated to result in depletion of surface flows, degradation and loss of riparian habitats, and adverse impacts and local extirpation of aquatic and riparian flora and fauna (Miller, 1961; Hendrickson and Minckley, 1984; Stromberg, 1993; Glennon and Maddock, 1994; Tellman et al., 1997). Various studies predict that the accelerating amount of groundwater removal will begin to deplete Verde River flows in the near future (Owen-Joyce and Bell, 1983; ADWR, 1994; Ewing et al., 1994; McGavock, 1996).

“...Another important and far-reaching result of increased urban/suburban development will be increased channelization of Verde River and its tributaries. Channelization within developed or developing areas is already increasing. This is illustrated by the five formal consultations that have been completed since 1993 on various flood and erosion repair and protection projects. Channelization has many adverse effects to razorback sucker, including direct habitat reduction by shortening of the river channel, loss of backwater larval and juvenile habitats, increased velocities, disruption of food base, and many others…” (USFWS 1998).

Global warming

The winter nesting phenology of DNBE is an adaptation to desert conditions. Nestlings are therefore vulnerable to early arrival of high temperatures. Heat stress is a significant mortality risk for nestlings. Of 51 nestling deaths, at least 4 have been attributed to heat stress. Nestlings may also attempt to fledge early in response to heat stress (AGFD 1999).

As global warming progresses, average temperatures will increase and, drought cycles may become more intense. Global warming is also likely to aggravate the loss of habitat and particularly large nest trees through heat stress, violent storms and erosion (SWRAG 2000).

Toxic contaminants

The FWS asserted that toxic contaminants in prey and in eggs, specifically DDT/DDE have declined since bans on production concurrent with the rise in US bald eagle populations.

However FWS ignore evidence that these and other toxicants remain a threat to the DNBE in Arizona. While organochlorine pesticide pollutant levels have declined nationwide, mercury has not declined since 1974 (64 FR 36461).

Organochlorines

DDT is still found at high levels in farming areas around Phoenix. The Salt and Gila and Salt rivers below the Salt River Project diversion dam remain impaired by toxic levels of DDT metabolites, toxaphene and chlordane in fish (ADEQ 2002). The AGFD found toxic levels of DDE in an egg from Sycamore BA in 1997 (AGFD 1999).

Eggshell thinning seems to have increased for DNBE although causes are not clear. Since 1977, four different studies have collected and analyzed Arizona bald eagle eggshells. Grubb et al. (1990) reported 8.8% thinning (1977-1985). Hunt et al. (1992) reported 4.9 percent thinning from 1987 to 1990, followed by 6.6% thinning 1991-1992. The most recent study from 27 BAs between 1993 and 1997 however, reported 9.7% thinning, the highest recorded since the late 1970s (AGFD 1999).
Mercury

Mercury was found at levels "sufficiently high to cause failure in eggs along the Verde, Salt, and Gila rivers" according to AGFD (1999). USFWS found excessive mercury levels in fish from Alamo Lake, Lake Pleasant, the lower Verde River, the Salt River, and Tonto Creek in 1988. Seven of 13 eggs collected from 1994 to 1997 from the Tower, 76, Pinal, and Winkelman BAs had toxic levels of mercury ranging from 2.11 to 8.02 ppm above the levels found to impair hatching in other birds (AGFD 1999).

Chronic lack of agency resolve

Despite assurances by FWS in the delisting proposal such as: "We will not issue these permits if the status of the bald eagle will be adversely effected" (64 FR 36458), the FWS has repeatedly issued permits for federal actions responsible for the deaths of at least 29 southwestern Desert Nesting Bald Eagles in the 1990s, and which were expected to result in 491 more deaths over the following five decades, even with the protection of listing under the Endangered Species Act in place (USFWS 1992b, USFWS 1993a, USFWS 1994, USFWS 1996, USFWS 1997).

AGFD found that "30 percent of all occupied territories (n=27) in 1994…may be adversely affected by currently planned projects…” (AGFD 1994).

The major threatening actions that continue to be permitted by FWS regardless of Bald Eagle listing are:

- livestock are still permitted by the US Forest Service and the BLM to graze riparian areas, halting recruitment of riparian deciduous nest tree species, muddying streams and destroying fish habitat.
- dams continue to release water at times that do not assist in recovery of downstream riparian habitat
- habitat continues to be inundated by reservoirs
- flying pilots continue to ignore AGFD flight advisories
- dewatering of remnant, free-flowing rivers continues
- exotic fish continue to be introduced into native fish habitat

Federal agencies currently have the legal obligation to adequately address each of these problems. To date, they have neglected to do so.

The FWS has repeatedly recognized in ESA section 7 consultations that federally permitted actions pose significant threats to DNBE but has simply allowed such actions to go forward:

"Improper livestock grazing has resulted in widespread degradation and loss of riparian habitats in the western United States. These effects include changes in vegetation structure, composition and quantity, and widespread changes in watershed hydrology. Livestock grazing in riparian habitats typically results in reduction of riparian vegetation (especially palatable broadleaf plants lie willows and cottonwood saplings) and is often the most serious cause of riparian degradation" (USFWS 1993a)

The November 16, 1994, Biological Opinion of the FWS on a US military proposal to widen and/or realign segments of four of the nine military training routes in Arizona admits that:

"nest watchers for ABENWP have documented numerous instances where low-level jet aircraft using MTRs [military training routes] have startled nesting bald eagles and chicks, and passed within close proximity (both above and below) to eagles flying around nesting and foraging areas. The elevation and lateral distance at which low-level flights occur near bald eagle nesting areas is of particular concern because eagles regularly fly to 610 m (2,000 ft) above the surrounding landscape. This puts eagle at risk of collision with low-flying aircraft traveling at speeds that do not enable pilots to avoid bird strikes. The Draft EA [Environmental Assessment] documents 62 bird strikes on six MTRs for the period 1990-1993, but gives no data on the species affected.” (USFWS 1994)
The December 29, 1997, Biological Opinion for modifications of Horse Mesa Dam located on the Salt River admits that:

“…The series of dams and reservoirs along this portion of the Salt River has greatly altered the river’s hydrologic regime and greatly affected aquatic and riparian habitats associated with the river. In the bald eagle breeding areas associated with Roosevelt Lake in the broad valley of the Tonto Basin, eagles generally place their nests in large cottonwood trees. The narrow, steep canyons where Apache, Canyon, and Saguaro lakes have been created, limit the potential for establishing stands of large cottonwood and willow trees…” (USFWS 1997b)

The March 30, 1998, Biological Opinion for assignment to the City of Scottsdale of CAP (Central Arizona Project) water allocations belonging to Cottonwood Water Works, Inc. (CWW) and the Camp Verde Water System, Inc. (CVWS), admits that:

“[g]roundwater pumping in Arizona has been repeatedly demonstrated to result in depletion of surface flows, degradation and loss of riparian habitats, and adverse impacts and local extirpation of aquatic and riparian flora and fauna” (USFWS 1998).

The FWS assertion in the delisting proposal of 1999 that recovery goals had been met or exceeded for the DNBE population, failed to cite earlier concerns expressed by FWS biologists that the recovery goals may have been inadequate or ill-informed. In 1993 the Bald Eagle Status Review Team pointed out that:

"Since 1988, extensive research and surveys have refined our knowledge of distribution, demographics, and general ecology..." and

"because of small population size and increasing or static threats, delisting is very unlikely” (USFWS 1993b).

The original Recovery Plan for the Bald Eagle acknowledged gaps in knowledge, and called for subsequent revision of recovery goals and objectives as new information emerged. However "[n]o revisions were written and no delisting goals were established...” (AGFD 1999)
Table 3. Comparison of FWS assessment of threats and assessment of threats based on Arizona specific data.

<table>
<thead>
<tr>
<th>Threat</th>
<th>FWS (1999) assessment of threat</th>
<th>Assessment of threat status in DNBE range (this paper)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Present or Threatened Destruction, Modification, or Curtailment of Its Habitat or Range</td>
<td>"no indications that availability of these habitats will limit the bald eagle population in the near future." (64 FR 36458)</td>
<td>Development continues to destroy DNBE habitat. Native fish species endangered and in decline. Nest tree recruitment faces >100 year gap. (see text for more details)</td>
</tr>
<tr>
<td>Over-Utilization for Commercial, Recreational, Scientific, or Educational Purposes</td>
<td>"no legal commercial or recreational use of bald eagles" (64 FR 36458)</td>
<td>International trade in Bald Eagle products has been permitted once again by the successful US bid to downlist bald eagles to Appendix II of the Convention on International Trade in Endangered Species or CITES at the 2004 Conference of Parties. Excessive incidental death due to low level flights, ORVs, human presence, toxicants, electrocution, roadkills, fishing tackle entanglement, continues.</td>
</tr>
<tr>
<td>Disease and Predation</td>
<td>" not considered to be a significant threat" (64 FR 36458)</td>
<td>Mortalities are aberrantly high particularly for nestlings. No information is available to determine the role of disease in these elevated mortalities.</td>
</tr>
<tr>
<td>The Inadequacy of Existing Regulatory Mechanisms</td>
<td>Bald and Golden Eagle Protection Act prohibits take. Migratory Bird Treat Act also prohibits take. Lacey Act bans commerce. Clean Water Act prevents pollution of waterways Federal Insecticide Act regulates pesticides National Environmental Policy Act (NEPA) requires agencies to document environmental impacts of federal projects. CITES prohibits international trade (64 FR 36459)</td>
<td>Clean Water Act does not prevent physical destruction of habitat or dewatering of streams. Federal Insecticide Act does not require cleanup of existing contamination. NEPA requires disclosure of impacts, not the avoidance of environmental harm. Downlisting to CITES App II now reopens potential for commercial trade. Draft Conservation Agreement is legally non-binding "Nothing in this MOA shall obligate the cooperators to expend appropriations or to enter into any contract or other obligations" (AGFD 1999).</td>
</tr>
<tr>
<td>Threat</td>
<td>FWS (1999) assessment of threat</td>
<td>Assessment of threat status in DNBE range (this paper)</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Other Natural or Manmade Factors Affecting Its Continued Existence: Disturbance</td>
<td>"Human disturbance of bald eagles is a continuing threat which may increase as numbers of bald eagles increase and human development continues to expand into the rural areas." (64 FR 36461)</td>
<td>Intensified developments around BAs include: - river-tubing (Blue Point BA). - 360-unit housing subdivision and golf course (Box Bar BA). - lakeside resort development (L. Pleasant BA). Disturbance from shooting and recreation such as ORVs close to nests and non-compliance with BA closures is increasing (from 5 to 12% in 1997 at L. Pleasant BA) (AGFD 1999). AGFD has an overflight advisory for the Verde and Salt drainages but "most pilots disregard the advisory" (AGFD 1999). Air Force expansion of training routes in Arizona was predicted to result cumulatively, over a 50 year period in the loss of 450 eagles or eggs and 900 disturbances. (USFWS 1994). The Nestwatch program has rescued 48 or 16% of nestlings (AGFD 1999). Delisting will end mandatory federal funding for Nestwatch.</td>
</tr>
<tr>
<td>Other Natural or Manmade Factors Affecting Its Continued Existence: Harmful chemicals</td>
<td>Since ban, DDT in fish has declined. Lead in birdshot banned in 1991 (64 FR 36460)</td>
<td>DDE and Mercury still found in DNBE eggs in toxic levels. Eggshell thinning has increased in recent decades (see text for details).</td>
</tr>
<tr>
<td>Other Natural or Manmade Factors Affecting Its Continued Existence: Entanglement in fishing tackle</td>
<td>Since 1980s, 52 instances of threat by tackle (FWS 1999).</td>
<td>From 1986 to 1999, 62 instances at 19 BAs of fishing line and/or tackle in nests or entangling individuals. Two nestlings deaths caused by fishing entanglement. This threat is bound to increase with increased population and urban sprawl (AGFD 1999).</td>
</tr>
</tbody>
</table>
CONCLUSIONS

The US Fish and Wildlife Service ignores the unique situation of the Desert Nesting Bald Eagle population in Arizona in proposing delisting of the Bald Eagle nationwide. This population is closed and isolated demographically from other US populations. The DNBE population in Arizona meets the criteria for listing as a Distinct Population Segment under the Endangered Species Act.

Although the Desert Nesting Bald Eagle population has grown since the beginning of surveys in the 1970s, after DDT was banned, the true scale of population growth remains uncertain due to possible undercounting of breeding areas in previous surveys.

Despite population increases since 1970, available fecundity and survival estimates indicate that the population is likely to decline toward extinction in the near future.

Population simulations indicate a critical need for more accurate assessment of adult and juvenile survival, as populations could decline to extinction rapidly for median estimates of life table parameters, or persist indefinitely within the 95% confidence intervals of available survival estimates.

The lower estimate of nestling survival appears to have declined significantly through the study period outside of the Salt/Verde cluster. The causes of this decline warrant urgent investigation.

The DNBE population remains very small and vulnerable to extinction risk from stochastic environmental fluctuations alone or in combination with directional environmental changes from habitat degradation and global warming.

Prey supplementation by fish releases in the lower Salt and Verde rivers is clearly linked to increased fecundity and nestling survival for BAs in that "cluster." The population may appear to be recovering under "natural" conditions, when in fact any observed recovery may result at least in part from an artificial abundance of prey, coupled with constant human intervention in the form of the Nestwatch Program. Simulations using the significantly lower fecundity and nestling survival estimates of unsupplemented BAs show rapid declines to extinctions.

Prevailing habitat conditions and threats do not appear to be conducive to population persistence in the absence of such interventions.

A review of threats suggests that the FWS delisting justification was premature and that Desert Nesting Bald Eagles remain critically endangered by fishing, low level flights and other forms of human disturbance, decline of native fish prey base, decline of suitable nesting areas as mature riparian forests die without replacement, dewatering of streams, global warming and habitat loss.
REFERENCES CITED

AGFD, Arizona Game and Fish Department. 1993. Arizona Riparian Inventory and Mapping Project, Arizona Game and Fish Department, Phoenix, December 1, 1993.

Driscoll, J.T. 1999. Arizona Game and Fish Department, correspondence to Dr. Robert Witzeman, Maricopa Audubon Conservation Chair, September 28, 1999.

USFWS. 1993a. Biological Opinion for US Bureau of Reclamation A-Cross Road, Indian Point Recreation Site, Tonto Creek Riparian Unity, and Roosevelt Lake operating levels, January 21, 1993 (2-21-92-F-285, 2-21-83-F-10).

USFWS. 1997. Biological Opinion for the safety of dams modifications at Horse Mesa Dam located on the Salt River December 29, 1997 (PXAO-1500 ENV-4.00 97003218 8341).

PETITION to (1) Recognize the Biologically, Behaviorally And Ecologically Isolated Southwestern Desert Nesting Bald Eagle Population (*Haliaeetus leucocephalus*) as a Distinct Population Segment, (2) to List this Population as Endangered, (3) and to Designate Critical Habitat for this Population

Bald Eagle, *Haliaeetus leucocephalus*

(© Robin Silver Photography)

Center for Biological Diversity
Dr. Robin Silver
Maricopa Audubon Society
Arizona Audubon Council
October 6, 2004
Executive Summary

Only approximately 166 individuals and less than 60 pairs of biologically, behaviorally and ecologically isolated Southwestern Desert Nesting Bald Eagles survive.¹ Their survival is already dependent, in good part, on heroic human support and management by the Arizona Bald Eagle Nestwatch Program (ABENWP).² Even more help will be necessary if the Desert Nesting Bald Eagle is to survive increasing threats to its continued existence.³

The Desert Nesting Bald Eagle population is isolated and discrete from other Bald Eagle populations as a consequence of physical, physiological, ecological, and behavioral factors.⁴ It persists in an ecological setting unusual and unique for the Bald Eagle.⁵ Loss of this discrete population would result in a significant gap in the range of the Bald Eagle.⁶

The biological, behavioral and ecological isolation of this population is superbly documented.⁷ This documentation includes the facts that the population (a) persists in the unique ecological setting of the Sonoran life zones of the desert Southwest,⁸ (b) is smaller than other Bald Eagles,⁹ (c) is behaviorally unique,¹⁰ and (d) is reproductively isolated.¹¹ The current understanding of genetics does not refute the discrete and isolated nature of the Desert Nesting Bald Eagle.¹²

The Desert Nesting Bald Eagle population is extremely small without prospect for significant expansion.¹³ The Arizona Game and Fish Department (AGFD) estimates that 77 individuals occupy 42 Arizona Breeding Areas (BAs).¹⁴ This estimate of the population occupying BAs may be overestimated however owing to the fact that some individuals occupy more than one Breeding Area (BA) simultaneously.¹⁵

⁵ Ibid.
¹² AGFD 2004e, Hunt et al. 1992, SWCBD 1999
¹⁴ AGFD unpublished data
¹⁵ AGFD unpublished data, CBD 2004e
The small size of the Southwestern Desert Nesting Bald Eagle population is, in itself, problematic. Isolated populations of this size are particularly vulnerable to demographic stochasticity and inbreeding depression. They become increasingly vulnerable to environmental threats as the loss of allelic variation closes options for future evolutionary adaptation.

Mortality for breeding adults in the Southwestern Desert Nesting population is excessive. Subadults display an extremely high presence in breeding pairs. Such subadult participation in breeding pairs is of great concern as it is very rare elsewhere. This excessively high presence of Subadults in breeding pairs most likely reflects the population’s high adult mortality rates.

Mortality for this population’s fledglings is also excessive. Reproductive rates are low for the Southwestern Desert Nesting Bald Eagle in comparison to Bald Eagle populations elsewhere. The most prolific Desert Nesting Bald Eagle breeding areas are showing productivity declines. In particular, breeding areas along the free-flowing rivers are showing productivity declines.

Based on AGFD survival estimates, a new population viability analysis demonstrates a high risk of extinction for this population within the next 57 and 82 years.
The risk of extinction for this population is undoubtedly even much higher owing to the fact that (1) threats to its continued existence are increasing, and (2) that the inadequacy of existing regulatory mechanisms is contributing to the vulnerability of the population.

Direct human intervention by ABENWP personnel has saved 16% of all Southwestern Desert Nesting Bald Eagle fledglings from 1983 through 1999. In some years these efforts have been “directly responsible for saving up to 60% of a single year’s nestlings…” Many more survive owing to indirect human interaction. ABENWP is responsible for both direct and indirect support efforts; however, ABENWP funding is not secure.

Southwestern Desert Nesting Bald Eagle habitat faces imminent and accelerating loss of increasing amounts of habitat vital for long-term survival. Two of the three Desert Nesting Bald Eagle nests on private property are not producing young and are destined to fail. The third faces additional increasing threat owing to impending stream dewatering.

Fish are the dominant food source for the Desert Nesting Bald Eagle. The native fishery with which the Desert Nesting population evolved continues to suffer decline. Of the 20 native fish of the Gila River Basin, one is extinct, six are extirpated, nine are listed as Threatened or Endangered, and nine of the ten others merit greater protection.

Toxic substances remain a problem. DDT and its derivatives are still found in Arizona. Pyrroles almost became the next DDT. Heavy metals exposure and contamination of the Desert Nesting Bald Eagle, particularly by mercury, is worrisome.

30 AGFD 1999a, 2000; Hunt et al. 1992;
31 USFWS 1992b
36 AGFD 1999a, 2000; Hunt et al. 1992; Ohmart and Sell 1980;
37 AGFD 1999a, 2000, CBD 2003b; Desert Fish Team 2003, 2004; Hunt et al. 1992; USFWS 2003d
38 CBD 2003b; Desert Fish Team 2003, 2004;
Fishing line and tackle are found in half of Southwestern Desert Nesting Bald Eagle nests.44 Deaths in both adults and nestlings have been documented resulting from this exposure.45 Increasing deaths are expected.46

Global warming will increase the Desert Nesting Bald Eagle’s challenge of living in an already extremely hostile environment.47 Global warming and drought are becoming increasing factors.48 Heat stress is a recognized leading cause of mortality for nestlings.49 Decreased productivity has already been documented in areas of local drought effects.50

Eggshell thinning remains a potential problem for the Desert Nesting Bald Eagle.51 The cause of documented eggshell thinning is still not known.52

Habitual violation of law and lack of agency resolve increasingly threatens protection of the Desert Nesting Bald Eagle.53 Cattle grazing continues within the riparian habitat critical to the Desert Nesting Bald Eagle.54 Dam operations do not release water at times necessary for replenishment of riparian nest trees.55 Low flying aircraft continue and will increasingly continue adversely affecting the population.56 Flight advisories are not mandatory and are routinely ignored.57 Dewatering of remnant free-flowing rivers continues.58 Exotic fish continue to be introduced into native fish habitat.59

From 1992 through 2004, the U.S. Fish and Wildlife Service (USFWS) reviewed and approved Federal projects responsible for deaths of up to 95 Desert Nesting Bald Eagles (adults, fledglings and/or nestlings).60 Over the 50-year life of these projects, USFWS expects, and has approved, 561 cumulative deaths!61 Thirty percent of occupied eagle nesting territories in Arizona may be adversely affected by these planned projects.62

USFWS has piecemealed the evaluation of these projects to avoid arriving at the obvious conclusion that, cumulatively, these projects will jeopardize the continued
existence of the Desert Nesting population. In 1995, a U.S. District Court examined USFWS’ similar ruse in attempting to weaken habitat protection for the Mexican Spotted Owl. In that case, the Southwest Center for Biological Diversity (SWCBD, now the Center for Biological Diversity) established the fact that an evaluation claiming non-jeopardy effects by individual projects across a landscape does not accurately reflect the programmatic net jeopardy effect. As a result, USFWS was forced to modify its projects affecting the Mexican Spotted Owl. Ironically, at the same time, USFWS continues to warn of increasing dangers to the survival of the Southwestern Desert Nesting Bald Eagle.

In 1995, the USFWS downlisted the Bald Eagle from Endangered to Threatened Eagles throughout the entire lower 48 states. This action included the downlisting of the Southwestern Desert Nesting Bald Eagle population from endangered to threatened. This action, in itself, significantly weakened protection for the Desert Nesting Bald Eagle.

In 1999, USFWS proposed delisting the Bald Eagle, including the Southwestern Desert Nesting population. USFWS’ inclusion of the Desert Nesting population in these efforts is inappropriate. Delisting of the Desert Nesting population violates law and precedent. It lacks scientific merit.

Anti-conservation attitudes fuel these current delisting efforts without regard for the biological, behavioral and ecological isolation of this population. At the National level these efforts reflect the Bush Administration’s historic antipathy for wildlife protection. The Bush administration is now even proposing “to ease export restrictions on American bald eagles” without regard to the discreteness and fragility of the Desert Nesting population.
At the State level these misguided efforts reflect nearly a decade of similar hostility by recent former Arizona Governors Fife Symington and Jane Hull. This hostility continues to be perpetuated by the current Arizona Game and Fish Commissioners.

The Endangered Species Act (ESA) defines “threatened” as any species that is likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range. The ESA defines “endangered” as any species that is in danger of extinction. The ESA defines “species” as includes any subspecies of fish or wildlife or plants, and any distinct population segment of any species or vertebrate fish or wildlife which interbreeds when mature. A Distinct Population Segment is defined as a population that is (1) biologically, behaviorally and ecologically isolated, (2) persisting in an unusual or unique ecological setting, and (3) whose loss would result in a significant gap in the species’ range. The Desert Nesting Bald Eagle population is truly a Distinct Population Segment owing to (1) its biological, behavioral and ecological isolation, (2) its persistence in an ecological setting unusual and unique for the Bald Eagle, and (3) and the fact that loss of this discrete population would result in a significant gap in the range of the Bald Eagle.

Once the Bald Eagle nested along every major river and large lake in the continental United States. The Desert Nesting population is now genuinely in danger of extinction. It is endangered in every sense of the definition of the phrase. The population meets the International Union for the Conservation of Nature (IUCN) criteria for “critically endangered” on the basis of small population size and vulnerability to stochastic extinction. It certainly meets the criteria for USFWS “endangered” status. ESA law and USFWS population policy and precedent require Endangered status for the Desert Nesting Bald Eagle Distinct Population Segment.

The habitat essential for the conservation of the Desert Nesting Bald Eagle has been extensively documented. Special management and protection efforts for this habitat must be increased if the Desert Nesting Bald Eagle is to survive. Critical Habitat designation significantly enhances endangered species recovery. Its designation will also help protect and recover the Desert Nesting population.
Table of Contents

I. Executive Summary (Page 1)

II. The Southwestern Desert Nesting Bald Eagle population is biologically, behaviorally, and ecologically discrete from the Bald Eagle nationwide.93 (Page 12)

1. The Desert Nesting Bald Eagle persists in the unique ecological setting of the Sonoran life zones of the desert Southwest.94 (Page 12)

2. The Desert Nesting Bald Eagle is smaller than other Bald Eagles.95 (Page 12)

3. The Desert Nesting Bald Eagle is behaviorally unique.96 (Page 13)

4. The Desert Nesting Bald Eagle is reproductively isolated.97 (Page 14)

5. The current understanding of genetics does not refute the discrete and isolated nature of the Desert Nesting Bald Eagle.98 (Page 17)

III. Threats to the continued existence of the Desert Nesting population are increasing.99 (Page 21)

1. The population is extremely small without prospect for significant expansion.100 (Page 21)

2. The population occupying Breeding Areas may be over estimated.101 (Page 21)

3. The small size of the Southwestern Desert Nesting Bald Eagle population is, in itself, problematic.102 (Page 23)

94 Ibid.

98 CBD 2004e, Hunt \textit{et al.} 1992, SWCBD 1999

101 AGFD unpublished data, CBD 2004e

4. Mortality for breeding adults is excessive.\(^\text{103}\) (Page 25)

5. The extremely high presence of Subadults in breeding pairs most likely reflects high adult mortality rates.\(^\text{104}\) (Page 26)

6. Mortality for fledglings is excessive.\(^\text{105}\) (Page 28)

7. The population’s survival is dependent, in good part, on heroic human support and management by the Arizona Bald Eagle Nestwatch Program (ABENWP).\(^\text{106}\) (Page 29)

8. Reproductive rates are low for the Southwestern Desert Nesting Bald Eagle in comparison to Bald Eagle populations elsewhere.\(^\text{107}\) (Page 33)

9. The most prolific Desert Nesting Bald Eagle breeding areas are showing productivity declines.\(^\text{106}\) (Page 34)

10. Breeding areas along the free-flowing rivers are showing productivity declines.\(^\text{109}\) (Page 36)

11. Desert Nesting Bald Eagle nests on private property are either not producing young or are destined to fail.\(^\text{110}\) (Page 37)

12. Southwestern Desert Nesting Bald Eagle habitat faces imminent and accelerating loss of increasing amounts of habitat vital for long-term survival.\(^\text{111}\) (Page 38)

13. The native fishery with which the Desert Nesting Bald Eagle population evolved continues to suffer decline.\(^\text{112}\) (Page 49)

14. Toxic substances remain a problem.\(^\text{113}\) (Page 55)
 a. Pesticides.\(^\text{114}\) (Page 55)
 b. DDT is still found in Arizona.\(^\text{115}\) (Page 55)

\(^\text{103}\) AGFD 1999a, 2000; Beatty and Driscoll 1996b; Gerrard et al. 1992; Hunt et al. 1992; Stalmaster 1987; USFWS 1993b
\(^\text{104}\) AGFD 1994b, 1999a, 2000; Hunt et al. 1992; SWCBD 1999
\(^\text{105}\) AGFD 1999a, 2000; Beatty and Driscoll 1996b; Hunt et al. 1992; Mesta et al. 1992
\(^\text{107}\) AGFD 1999a, 2000; Hunt et al. 1992; USFWS 2003b
\(^\text{108}\) AGFD 1994b, 1999a, 2000
\(^\text{109}\) Ibid.
\(^\text{112}\) AGFD 1999a, 2000; CBD 2003b; Desert Fish Team 2003, 2004; Hunt et al. 1992; USFWS 2003d
c. Chlorfenapyr almost became the next DDT.116 (Page 56)

d. Heavy metals exposure and contamination of the Desert Nesting Bald Eagle, particularly by mercury, is worrisome.117 (Page 56)

15. Fishing line and tackle are found in half of Southwestern Desert Nesting Bald Eagle nests.118 Resulting mortalities in both adults and nestlings have been documented and more are expected.119 (Page 59)

16. Heat stress is already recognized as a leading cause of mortality for nestlings.120 Decreased productivity has already been documented in areas of local drought effects.121 Global warming and drought are becoming increasing factors.122 (Page 60)

17. Eggshell thinning remains a potential problem for the Southwestern Desert Nesting Bald Eagle.123 (Page 62)

18. Habitual violation of law and lack of agency resolve increasingly threatens protection of the Southwestern Desert Nesting Bald Eagle.124 (Page 63)

a. Cattle grazing continues within the riparian habitat critical to the Desert Nesting Bald Eagle.125 (Page 64)

b. Dam operations do not release water at times necessary for replenishment of riparian nest trees.126 (Page 66)

c. Dewatering of remnant free-flowing rivers continues.127 (Page 68)

d. Exotic fish continue to be introduced in native fish habitat.128 (Page 71)

e. Low flying aircraft continue and will increasingly continue adversely affecting the population.129 Flight advisories are not mandatory and are routinely ignored.130 (Page 78)

116 EPA 1999, 2000

117 ADEQ 2004a, 2004b; AGFD 1999a, 2000, 2004a, 2004b; EPA 2004b; USFWS 2001d

118 AGFD 1994b

119 AGFD 1999a, 2000

120 AGFD 1999a, 2000; Driscoll 1999; Hunt \textit{et al.} 1992

121 USFWS 2003b

123 AGFD 1999a, 2000; SWCBD 1999

125 AGFD 1999a, 2000; Driscoll 1999; USFWS 1997b, 1998, 2002a, 2003b

126 AGFD 1999a, 2000; USFWS 1997b, 2003b

127 Desert Fishes Team 2003, 2004; USFWS 1998; Verde Natural Resources Conservation District 1999

128 Desert Fishes Team 2003, 2004
f. USFWS' approval of excessive numbers of Desert Nesting Bald Eagle deaths is excessive.\(^{131}\) (Page 79)

19. The USFWS, itself, continues to warn of increasing dangers to the survival of the Desert Nesting Bald Eagle.\(^{132}\) (Page 82)

20. A new Center for Biological Diversity (CBD) population viability analysis, based on AGFD survival estimates, demonstrates a high risk of extinction for this population within the next 57 and 82 years.\(^{133}\) (Page 93)

IV. ESA law and USFWS population policy and precedent require Endangered status with Critical Habitat for the Desert Nesting Bald Eagle Distinct Population Segment.\(^{134}\) (Page 102)

1. Loss of this discrete population would result in a significant gap in the range of the Bald Eagle.\(^{135}\) (Page 102)

2. The Southwestern Desert Nesting Bald Eagle Population is truly a Distinct Population Segment.\(^{136}\) (Page 102)

3. USFWS' downlisting and delisting efforts including the Desert Nesting population violate law and precedent and lack scientific merit.\(^{137}\) (Page 111)

4. The inadequacy of existing regulatory mechanisms is contributing to the vulnerability of the Desert Nesting Bald Eagle population.\(^{138}\) (Page 114)

\(^{129}\) AGFD 1999a, 2000; USFWS 1993a, 1994c, 1997b, 2002a, 2003b
\(^{130}\) AGFD 1999a, 2000, 2001a, 2002a, 2003, 2004c; Arizona Republic 1989
\(^{131}\) AGFD 1994b; USFWS 1992d, 1993a, 1994c, 1996b, 1997b
\(^{134}\) CBD 2004d; ESA Sections 3 & 4; SWCBD 1999
5. Endangered Species Act (ESA) law and USFWS population policy and precedent require Endangered status with Critical Habitat for the Desert Nesting Bald Eagle Distinct Population Segment.139 (Page 117)

IV. Conclusion (Page 120)

V. References (Page 124)
II. The Southwestern Desert Nesting Bald Eagle population is biologically, behaviorally, and ecologically discrete from the Bald Eagle nationwide.\(^{140}\)

1. The Desert Nesting Bald Eagle persists in the unique ecological setting of the Sonoran life zones of the desert Southwest.\(^{141}\)

 This discreet, behaviorally isolated population persists in a unique ecological setting.\(^{142}\) The Desert Nesting Bald Eagle population breeds predominately in upper and lower Sonoran life zone habitat.\(^{143}\)

 With the exception of a single 8,000 foot elevation nest (Luna BA), all known Arizona BAs are located in the Sonoran Desert in the central part of the State in Upper and Lower Sonoran Desert habitats from elevations of 330 meters (1,080 feet) to 1,720 meters (5,640 feet).\(^{144}\) They are closely associated with the Salt, Verde, and Gila river drainage waters.\(^{145}\) Brown (1994) describes the representative vegetation of these areas as including Arizona sycamore (\textit{Platanus wrightii}), blue palo verde (\textit{Cercidium floridum}), cholla (\textit{Opuntia} spp.), Fremont cottonwood (\textit{Populus fremontii}), Gooding willow (\textit{Salix gooddingii}), mesquite (\textit{Prosopis} spp.), saguaro (\textit{Carnegia gigantea}), and salt cedar (\textit{Tamarix pentandra}; exotic). The transition zones between these areas include pinyon (\textit{Pinus} spp.) and juniper (\textit{Juniperus} spp.).\(^{146}\)

2. The Desert Nesting Bald Eagle is smaller than other Bald Eagles.\(^{147}\)

 Quantitative measures of the physical differences between Southwestern Desert Nesting Bald Eagles and Bald Eagle elsewhere offer evidence of morphological discontinuity.\(^{148}\)

 Arizona males weigh an average of 3.3 kilograms (kg). California males average 4.1 kg. Alaska males average 4.7 kg.\(^{149}\)

 Arizona females average 4.5 kg. California females average 5.1 kg. Alaska females average 5.8 kg.\(^{150}\)

\(^{141}\) Ibid.

\(^{143}\) AGFD 1999a, 2000; Hunt \textit{et al.} 1992; USFWS 2002a, 2003b;

\(^{145}\) Ibid.

\(^{148}\) Hunt \textit{et al.} 1992

\(^{149}\) Ibid.

\(^{150}\) Ibid.
3. The Desert Nesting Bald Eagle is behaviorally unique.151

The breeding habitat of Southwestern Desert Nesting Bald Eagles is much drier and hotter than that of any other Bald Eagle population.152 The habitat utilized by Arizona desert nesting Bald Eagles represents a significant departure from the habitat selection of Bald Eagles in the rest of North America.153 Southwestern Desert Nesting Bald Eagle’s breed earlier, nest earlier and fledge their young sooner than Bald Eagle’s elsewhere.154

In order to adapt to high summer temperatures and to time breeding cycles to the accessibility and spawn of native fish (primarily Suckers), Southwest Desert Bald Eagles breed in the fall, nest in the winter and fledge in the late spring.155 Nest initiation occurs from November to February. Two to three eggs are laid and incubated from December to March. The eggs hatch after about 35 days, from February through April. Nestlings are in the nest for 12 weeks until May or June.156

Unlike Bald Eagles elsewhere in North America, Southwestern Desert Nesting Bald Eagles utilize cliff nest sites.157 About one half of the Southwestern Desert Nesting population utilize cliff nest sites. Of 111 known nests, 53 (48\%) are on cliffs (or pinnacles).158 Only in the Aleutian Islands is this unique use of cliff nest sites known.159

These behavioral and ecological factors evidence separation of the Southwest population from other Bald Eagle populations. USFWS (2003b) quotes Hunt \textit{et al.} (1992) to summarize the situation:

“…Arizona bald eagles demonstrate unique behavioral characteristics in contrast to bald eagles in the remaining lower 48 states. Eagle in the Southwest frequently construct nests on cliffs. By 1992, of the 111 nest sites known, 46 were in trees, 36 on cliffs, 17 on pinnacles, 11 in snags, and one on an artificial platform. However, while there were more nests in trees, one study found that cliff nests were selected 73 percent of the time, while tree nests were selected 27 percent of the time. Additionally, eagles nesting on cliffs were found to be slightly more successful in raising young to fledgling though the difference was not significant. Bald eagles in the Southwest are additionally unique in that they establish their breeding territory in December or January and lay eggs in January or February, which is early compared with bald eagle in more northerly areas. It is believed this is a behavioral adaptation so chicks can avoid the extreme desert heat of midsummer. Young eagles will remain in the vicinity of the nest until extreme desert heat of

153 Ibid.
154 Ibid.
155 Ibid.
156 Ibid.
157 AGFD 1999a, 2000; Gerrard and Bortoletti 1988; Hunt \textit{et al.} 1992; Stalmaster 1987; USFWS 2003b
158 Ibid.
159 Robin Silver personal communication
midsummer. Young eagles will remain in the vicinity of the nest until June (Hunt et al. 1992)."\(^\text{160}\)

AGFD agrees:

"…We believe that nesting on cliffs and breeding earlier in the season are unique behavioral adaptations for the species in Arizona…"\(^\text{161}\)

4. The Desert Nesting Bald Eagle is reproductively isolated.\(^\text{162}\)

From 1991 to 1998 (eight years), biologists in Arizona objectively identified 353 individuals participating in Desert Nesting Bald Eagle breeding activity.\(^\text{163}\) One of the 353 objectively identified individuals participating in breeding activity was not born from within the Desert Nesting population.\(^\text{164}\) In other words, 99.997% of individuals objectively identified while participating in breeding activity came from within the Desert Nesting population.\(^\text{165}\) No new data to date refutes these facts.\(^\text{166}\)

Since 1977, for 22 years, biologists in Arizona have banded 256 nestlings.\(^\text{167}\) One individual has been objectively identified as having emigrated. In other words, 99.6% of individuals born here remain here.\(^\text{168}\) No new data to date refutes these facts.\(^\text{169}\)

Such percentages evidence reproductive isolation among Desert Nesting Bald Eagles:

"…Natal origin of breeding adults. Bald Eagles hatched in Arizona are the primary source of the state’s breeding adults. Based upon the available information, "it is prudent to assume that the Arizona population is indeed isolated and may contain genes and coadapted gene combinations appropriate to local conditions (Hunt et al. 1992)." This aspect of their natural history is important because it places a greater need for the management, success, and survivorship of Bald Eagles…"

…Band returns in the breeding population have supported the theory that Bald Eagles hatched in Arizona breed here (Beatty and Driscoll 1996b, Beatty and Driscoll unpubl. data). From 1991 to 1998, 74.5 percent (353/474) of all breeding adults were identified. In 1991, 21 percent of all identified adults originated from Arizona, while the rest were unknown. In 1998, the percentage of known Arizona origin breeders had more than doubled (53.3%) (Appendix

\(^{160}\) USFWS 2003b

\(^{161}\) AGFD 1994b

\(^{163}\) AGFD 1999a, 2000

\(^{164}\) ibid.

\(^{165}\) ibid.

\(^{166}\) Personal communication AGFD, USFWS

\(^{167}\) AGFD 1999a, 2000

\(^{168}\) ibid.

\(^{169}\) Personal communication AGFD, USFWS
E). During this study period, only one individual was found breeding inside Arizona originating from somewhere else (southeast Texas), and only one was found to emigrate from Arizona (Temecula, California)…

… To date, evidence from the banding and identification of breeding adults defends the theory that Arizona's breeding population is not supported or maintained by immigration from other states or regions. Because adults return to the vicinity of their natal area to breed, the large distance between small breeding populations in the Southwest decreases the chance for movement between neighboring populations. Probably most convincing are the results from banding 256 nestlings over 20 years and identifying 372 breeding adults over 8 years. Only one individual from out-of-state entered the breeding population and only one left. Additionally, the proportion of breeding adults with color bands had steadily increased, while the presence of unmarked Bald Eagles has decreased. Thus, continued attention to the survivorship of all Arizona Bald Eagles is vital to the maintenance of our breeding population. We can not depend on immigration to Arizona from nearby states to make up for poor management in Arizona…”

This quotation is from the preamble to the proposed AGFD’s Conservation Agreement. Among the conclusions, AGFD concludes:

“…WITNESSETH…WHEREAS…Arizona supports a biologically isolated population of desert nesting Bald Eagles…”

The rare entry (0.003%) into the population of an individual from outside of the breeding population of the Desert Nesting population has yet to contribute to the gene pool. No fledgling from the Luna nest has entered into breeding activities within the region. Even if such a single entry would take place, it would be functionally insignificant.

In 1994, AGFD cautioned strongly against highlighting the significance of this eagle:

“We have not been able to establish that eagles nesting in the mountains or more specifically, the one eagle produced from the Luna BA [Breeding Area], contributes to Arizona’s pool of desert nesting birds…”

“…Additionally, the future of the Luna BA seems tenuous at best.”

AGFD (1994b) warned that repopulation in the event of a population crash would be highly unlikely:

“Because Arizona continues to possess nearly the entire breeding population within the Southwestern Region, concerns remain over retaining
the genetic integrity of this population. Presently, all but one breeding bird identified in Arizona has originated from within the state. This bird originated from Southeast Texas and was breeding in a habitat and location previously undocumented for Arizona bald eagles. Should a population crash occur in Arizona, the pool of eagles to repopulate the Southwest could be left to the few pairs in the neighboring states or Mexico. However, at this time, there is no documentation of eagles from these neighboring Southwestern states breeding in Arizona or vice versa.”173

This conclusion has not changed in 2004. There is still not evidence that fledglings from the Luna breeding area have participated in breeding activity elsewhere within the region (Pers. comm. AGFD, USFWS). Rare entry to other regional Bald Eagle populations is the norm:

“…To test the idea that bald eagles tend to breed far from their natal sites, questionnaires were sent to and received from researchers studying nine populations of bald eagles…Their responses indicated that only two nestlings out of thousands banded were found to have bred in other areas. One moved 331 km (205 miles) north from its natal site in the Greater Yellowstone Ecosystem (Al Harmata, in litt.); the other traveled 418 km (260 miles) south from its natal site near Charleston, South Carolina to nest in Ocala National Forest, Florida (Tom Murphy, pers. Comm.; Petra Wood, in litt.). In contrast, the tendency for banded nestling to breed within their natal populations is well known…”174

“…Our data indicate that bald eagles fledged in Texas exhibit strong fidelity to natal nesting areas for breeding.”175

USFWS (2003b) quotes from AGFD (1999a, 2000):

“…the Arizona Game and Fish Department (in prep.) concluded that ‘evidence from the banding and identification of breeding adults defends the theory that Arizona’s breeding population is not supported or maintained by immigration from other states or regions. Because adults return to vicinity of their natal origin to breed, the large distance between small populations in the Southwest decreased the chance for movement between neighboring populations. Probably most convincing are the results from banding 256 nestlings over 20 years and identifying 372 breeding adults over 8 years. Only one individual from out-of-state entered the breeding population and one left. Additionally, the proportion of breeding adults with color bands (placed on as nestlings in Arizona” has steadily increased, while the presence of unmarked eagles has decreased. Thus, continued attention to the survivorship of all Arizona bald eagle is vital to maintenance of our breeding population. We can

173 Ibid.
174 Hunt et al. 1992
175 Mabie et al. 1994
not depend on immigration to Arizona from nearby states to make up for poor management in Arizona.176

5. The current understanding of genetics does not refute the discrete and isolated nature of the Desert Nesting Bald Eagle.177

Review of all information regarding genetic analysis of the Southwestern Desert Nesting Bald Eagle reveals consistent uncertainty. Samples studied to date remain small. Current genetic data support no definitive conclusions concerning isolation or lack of isolation. Because of small sample size and the targeted information studied, authoring researchers caution against conclusive interpretation of their data. The lack of correlation between the degree of environmental adaptation required to survive in a desert environment and our ability to offer genetic explanation only serve to highlight our rudimentary level of understanding of genetics. The current understanding of genetics does not refute the discrete and isolated nature of the Desert Nesting Bald Eagle.178

In 1995, in spite of warnings from Bald Eagle biologists, as well as the genetic researchers themselves, USFWS inappropriately cited genetic analysis as a key factor in their 1995 decision to downlist the Desert Nesting population from endangered to threatened.179 USFWS cited two genetic studies from Hunt \textit{et al.} 1992.180 Based in large part on this genetic analysis, USFWS claimed that the Desert Nesting Bald Eagle population is not a distinct population segment. USFWS claimed that the Southwestern Desert Nesting Bald Eagle is merely a part of a continuous population throughout the lower 48 states:

``...genetic evidence does not indicate this population segment to be unique...Though Hunt \textit{et al.} (1992) suggested that the central Arizona population may be reproductively isolated, that publication also stated that, ````neither enzyme electrophoresis nor DNA fingerprinting resolved any specific genetic markers from which Arizona eagles could be differentiated from those of other populations * * *.; Both techniques showed higher levels of genetic heterozygosity in the Arizona samples than the other populations tested * * *, [and] * * * these healthy levels of variation imply that the Arizona eagles are not currently experiencing inbreeding problems and may be capable of adapting to future environmental change. This, together with the occupancy and reproductive data, suggests that the population may be viable over the long term * * *'' and that, in spite of the smaller size of the Arizona eagles, ````We were unable to show a quality of uniqueness among the Arizona eagles that implies the existence of adaptations to the desert environment * * *''Thus, based on new information on immigration and previously known genetic data,
the Service believes this population is not reproductively isolated and should be included with the reclassification of the lower 48 States population.”

Two genetic studies were commissioned as part of the Hunt et al. 1992 review. One study involved enzyme electrophoresis and the other DNA fingerprinting. In the enzyme electrophoresis study,

“…no significant heterogeneity of allele frequency was detected between the Arizona group and the six other samples (Maryland, Florida, Washington, California, Texas, or Minnesota), or did we find alleles unique to any population. Nei’s analysis of genetic distance…vaguely suggested that eagles from Arizona were most similar to those from Maryland. However, all samples in that comparison were close in value, ranging from 0.0288 to 0.0396, whereas the Nei’s statistic for some of the samples from outside Arizona appeared to differ more from one another than they did from Arizona (range 0.0003 to 0.0587). We caution against interpreting these results as significant because of the few number of polymorphic loci examined (n=5). Interestingly, however, the Arizona population showed the highest level of genetic heterozygosity among the samples tested…”

In the DNA fingerprinting study, similar inconclusive information resulted:

“…[i]n comparing DNA from Arizona, California, and Florida (breeding adults and nestlings), Dr. Vyse [the primary DNA fingerprinting researcher] was unable to identify constant population-specific DNA markers. However, using combinations of bands, he was able to assign most individuals to their respective populations. Intrapopulation similarity was highest in the Florida samples, suggesting they were the most inbred of the three populations. Using two enzyme probes, the California eagles appeared more inbred than the Arizona birds, but the opposite was the case when using a third probe. The standard error of the mean of similarity coefficients showed a corresponding pattern: again, the Florida eagles appeared more inbred than those in Arizona or California.

Comparing similarity coefficients between populations showed a large difference between the Arizona and Florida eagles, indicating that they are the most distally related of the populations tested. Furthermore, the California population appeared more closely related to the Florida birds than to the Arizona eagles. Analysis of a fourth sample from Canada indicated a relatively large genetic distance from the other three populations…”

The caution offered by the enzyme electrophoresis researchers was ignored by USFWS in their 1995-downlisting decisions:

“…We feel caution should be exercised when interpreting these results due to the low numbers of individuals sampled from most states but especially

181 USFWS 1995
182 Hunt et al. 1992
183 Ibid.
because of the few loci examined... (Zegers et al., 'Enzyme Genetics of Bald Eagles in Arizona')184

Also ignored was the fact that DNA fingerprinting was able to correctly identify individuals to populations in most cases:185

"...Conclusions...patterns of fragments will identify eagles to a specific population...Summary...We were able to identify combinations of restriction fragments that were unique to certain populations, and these combinations can be used to correctly identify population membership of individuals in most cases..." (E.R. Vyse, 'An Analysis of Bald Eagle Population Genetics using DNA Fingerprinting,')186

Hunt et al. (1992) offer several explanations for geneticists' findings of heterozygosity that remain plausible in 1999:

"...DDT did not reduce the southwestern bald eagle population to levels at which alleles would drift to fixation..."

"...ambient levels of heterozygosity in bald eagles living in the southwest may have been high in pristine times because of the shifting selective pressures characteristic of the wet and dry cycles of desert environments..."187

With our current levels of knowledge and technological capabilities, we cannot know which of these (or other) explanations is correct. We can only observe near complete (99.997%) reproductive isolation in a population uniquely adapted to a desert environment.

USFWS inappropriately highlights, out of context, a Hunt et al. (1992) conclusion of the lack of scientific sensitivity to identify unique markers correlating to adaptation to the desert environment without accompanying qualifiers of Hunt et al. (1992):188

"'We were unable to show a quality of uniqueness among the Arizona eagles that implies the existence of adaptations to the desert environment.' (Hunt et al.. 1992)189

Examining the Hunt et al. (1992) report in detail, it is clear that the researchers were repetitively expressive of the limitations of trying to identify markers of the uniqueness required to survive in such an inhospitable environment.190 Our level of discernment is still not as sensitive as the differences that we know exist in order to facilitate such unique adaptations.

184 Ibid.
185 Ibid.
186 Ibid.
187 Ibid.
188 USFWS 1995
189 Ibid.
190 Hunt et al. 1992
Caution against drawing conclusions from genetic studies has already been presented. The discussion of the sophistication of adaptability to the combination of high temperature and low humidity of the desert nesting environment is illustrative of the caution that must still be entertained before drawing definitive conclusions about our ability to discern uniqueness besides obvious morphological differences:

“…Evolutionary changes involving eggshell morphology, embryonic metabolism, and the adaptations of nestling to heat stress and dehydration might involve a relatively small number of genes. It is very highly unlikely that such genes would be detectable in the broad studies of genetic variation reported in Sections E6 [E.R. Vyse, ‘An Analysis of Bald Eagle Population Genetics using DNA Fingerprinting’] and E7 [‘(Zegers et al., ‘Enzyme Genetics of Bald Eagles in Arizona,’)] (neither of which display great numbers of loci)…” 191

The researchers included in Hunt et al. (1992) established that both enzyme electrophoresis and DNA fingerprinting could identify individual populations.192 Unfortunately, the current level of genetic discernment is not sensitive enough to identify the specific genetic differences among populations that survive in extremely diverse environments.

We know that a unique genetic blueprint controls and directs survival in these unique conditions such as the Southwest’s extreme heat and low humidity. The fact that our level of genetic understanding is not sophisticated and sensitive enough to objectively identify genetic uniqueness should not be used to deny protection to a population that is obviously surviving in an environment far different than Bald Eagles elsewhere.

In summary, genetic analyses are suggestive of differentiation, but generally inconclusive. FWS based its delisting decision, in good part, on an inappropriate claim that the Desert Nesting Bald Eagle population is not a “distinct population segment” citing as evidence two genetic studies in Hunt et al. (1992). However, one of these was statistically inadequate to detect differentiation and the second reported significant differentiation that was ignored by FWS. One allozyme study used only five loci and low sample sizes and unsurprisingly, was unable to resolve Arizona from other populations (MD, FL, WA, CA, TX, MN). DNA fingerprinting analysis isolated population specific DNA markers, and suggested that CA and FL samples were closer to each other than to Arizona. (Hunt et al. 1992).193

191 Ibid.
192 Ibid.
193 CBD 2004e
III. Threats to the continued existence of the Desert Nesting population are increasing.194

1. The population is extremely small without prospect for significant expansion.195

The Bald Eagle once nested along every major river and large lake in the continental United States.196 Breeding bald eagles are no longer found in all areas of their historic range.197 The largest remnant of breeding Southwestern Bald Eagles is a small population isolated primarily in central Arizona.198

Less than 60 nesting pairs of Southwestern Desert Nesting Bald Eagles survive today.199 These totals include 42 occupied Breeding Areas in Arizona, three in Utah, three in New Mexico, and possibly three in Sonora Mexico.200

The Arizona population is not likely to increase substantially or expand its distribution. There is simply not enough surviving suitable habitat available.

“…population sizes in Arizona are not expected to increase without riparian habitat and prey base modifications…”201

2. The population occupying Breeding Areas may be over estimated.202

The Arizona Game and Fish Department estimates that 77 individuals occupy the 44 known Arizona Breeding Areas (BAs).203 This total may be an over estimations owing to the fact that member of breeding pairs recorded as “occupying” but not breeding may also be occupying adjacent, occupied BAs.204 Males 88J03 and 92J07 moved between Breeding Areas. Females can also move. Female 91J08 moved from the Winkelman Breeding Area to the Pinto BA.205

It is possible that more adults recorded as "occupying" but not breeding in a BA may have come from adjacent occupied BAs. To account for this source of uncertainty, we recognize that a BA recorded as "occupied" has the high number of observed Eagles of either 1 or 2. If, however, BAs were adjacent to other occupied BAs on the same river system, the minimum possible adult number was zero since the adults observed may have

196 Gerrard and Bortoletti 1988
197 Stalmaster 1987
198 Hildebrandt 1981, Hunt et al. 1992
199 AGFD 2004d
200 AGFD 2004d; Personal communication AGFD, New Mexico Department of Game and Fish, and USFWS
201 AGFD 1999a, 2000
202 AGFD unpublished data, CBD 2004e
203 AGFD 2004d
204 AGFD unpublished data, CBD 2004e
205 AGFD unpublished data
come from occupied adjacent BAs. Figure 1 shows the upper and lower estimates of known adults accounting for this source of uncertainty.

In addition, the searching protocol is not random. Nor can it be unbiased since searchers naturally tend to search more in areas that bald eagles have been known to occupy in the past. This inevitably leads to a better search coverage with each passing year as new BAs are discovered. It is probable that a certain portion of BAs first "discovered" in a particular year could have been present and even occupied in previous years. AGFD underscores the ephemeral nature of the evidence for a BAs existence by reporting that 18 nests in known BAs had disappeared by 2003.206

Moreover between 1987-2003 only 16.7% of fledglings were left unbanded, whereas in the same period, at least 40.4% of breeding adults were unbanded.207 Three possible scenarios offer explanation for this discrepancy. First, unbanded nestlings may suffer less mortality. Banding effects on bird mortalities have been recorded before, however most differences are minor and so this is an unlikely explanation. Second, immigration could account for the discrepancy. This is also an unlikely explanation as Bald Eagle in adjacent areas are also banded at high frequencies, but the only recorded immigration event to date involves the Luna BA male immigrating from Texas.

Finally, a large pool of undiscovered and thus unbanded nestlings could have been present in earlier surveys. This is the most likely explanation of the three possibilities. It corroborates the hypothesis that the population was undercounted in earlier years. Figure 1 offers a more conservative and most likely, more accurate, estimation of adult population size, while reflecting an acknowledged increase in population size. A more accurate estimation of participating breeding Desert Nesting Bald Eagle for 2003 ranges from 62 to 81 individuals:

Figure 1. Ranges of estimated numbers of known adults 1970-2003.

206 AGFD 2004d
207 AGFD unpublished data
3. The small size of the Southwestern Desert Nesting Bald Eagle population is, in itself, problematic.

There are approximately 166 individual Desert Nesting Bald Eagles in Arizona. We arrived at this number using AGFD survival estimates to estimate juvenile numbers in 2003 from nestling numbers in each of the four years prior to 2003.

This population is biologically, behaviorally and ecologically isolated. Any population of 166, or undoubtedly less than 200 total individuals, and any population of less than 60 nesting pairs faces challenges deriving directly from its small size and isolation itself.

The population dynamics of such a population is essentially similar to that of the isolated Northern Spotted Owl metapopulations examined by the Interagency Scientific Committee on the Northern Spotted Owl lead by Dr. Jack Ward Thomas in 1990. Dr. Thomas and the Interagency Scientific Committee (which included USFWS scientists) examined the effects of widespread habitat destruction on the regional metapopulation(s) of a raptor population:

"Most species persist regionally as metapopulations, sets of populations that are linked by dispersing individuals, allowing for the recolonization of unoccupied habitat patches after local extinction events. Loss of suitable habitat patches, or disturbances in the surrounding landscape matrix, can disrupt metapopulation dynamics and this loss can contribute to the regional extinction of a species…

The Committee has concluded that persistence of the spotted owl is presently at risk in significant portions of its range as a result of continued destruction, and concomitant fragmentation, of its habitat. This loss has included much of the habitat that appears to be superior for the owl…The result of this process has been the fractioning of a formerly more continuous population of spotted owls into smaller, isolated demographic units, many of which are at risk of local extinction because of demographic factors and environmental phenomena."
This situation is directly applicable to that of the biologically, behaviorally and ecologically isolated Desert Nesting Bald Eagle. In such a case, one or a combination of four factors will determine long-term viability.²¹⁴

"Four general categories of analysis (and information) have been applied to the northern spotted owl case and are applicable to the question of long-term survival for raptors generally: demographics, genetics, patch dynamics and environmental change...if a species' long-term survival is shown to be in doubt on the basis of any single aspect, then the question of interactive or higher order effects is moot...For example, if demographic analysis indicates a population is declining at a rate that will result in extinction in 50 years, it is of little consequence to present management considerations that it will fall below the threshold size for avoiding inbreeding depression in 40 years. Similarly, if the environment supporting a population becomes inhospitable, such as through widespread drought, fires, or other natural events, or through the human-conversion of habitat as in the case of the northern spotted owl, the consequences of demographic and genetic processes 40 or 50 years hence are inconsequential.

Standard demographic analysis applies actuarial data (i.e., age-specific fecundity and survival schedules) to population models in order to determine if a population is growing, declining, or just replacing itself, and to protect future bends...Theoreticians place the threshold for a high probability of extinction due to demographic stochasticity at around 20 potentially reproducing individuals (thus 20 females in a sexually reproducing species)...A large population of a typical vertebrate species, like a raptor, if reduced to...a genetically effective size of 50 [equal to over 61 successfully reproducing pairs (Reed et al. 1986)], may suffer from inbreeding depression. (Barrowclough and Coats 1985, Franklin 1980, Soule 1980) Since inbreeding depression amounts to a depression of fecundity and survivorship, it directly affects the demographic outlook of a population. Demographic stochasticity and inbreeding depression may interact, the effects of one exacerbating those of the other, further hastening the decline of a population (Gilpin, M.E., and M.E. Soule 1986)...Populations that are reduced in size tend to lose genetic variability through "genetic drift"...average individual heterozygosity is reduced...[and] the "pool" of allelic variation in the population overall is reduced. [B]ased on theory, experiments and knowledge of raptor population biology, a population size of roughly a thousand or larger ought to maintain virtually all of the genetic variation of a population (cf. Soule 1980). Below this, variation is lost at a rate proportional to the size of the population...It is well established...that a significant reduction in heterozygosity increases a population's vulnerability to environmental threats and that the loss in allelic variation close options for future evolutionary adaptation.

[Raptors...consist of so-called metapopulations or populations of populations...Levins (1970) has shown...that to persist, the average rate of

²¹⁴ Wilcox 1987
extinction of local populations must not exceed that of the colonization of unoccupied patches within a metapopulation...

The ultimate cause of extinction is environmental change that exceeds the adaptive capacity of species...a species whose habitat is being destroyed is obviously doomed..."

"We can identify threats to nest sites, foraging habitat and to the birds themselves, then devise appropriate mitigation. The mitigation of such threats per se does not, however, constitute protection of a viable population. Only by having, in addition, at least an approximate idea of the structure, and genetic and demographic parameters can we assess the long-term prospects for survival. And only then can the cumulative impacts of environmental perturbations be fully considered."\(^{215}\)

The Desert Nesting Bald Eagle, with population characteristics of extended adult longevity, high juvenile mortality, and intense territoriality, may be poised to enter a geometric population decline consistent with Russell Lande's models of extinction thresholds.\(^{216}\)

4. Mortality for breeding adults is excessive.\(^{217}\)

Mortality for Southwestern Desert Nesting Bald Eagle breeding adults is higher than can support a stable population. Basic principles of Conservation Biology require that adult mortality must equal recruitment into the breeding population for that population to remain stable. Adult mortality is higher than recruitment for the Southwestern Desert Nesting Bald Eagle.

Gerrard et al. (1992) determined breeding adult mortality was between 6.5 and 7.7 percent for a stable population in Saskatchewan. Determining acceptable mortality rates for a stable breeding population is a difficult task.\(^{218}\) The effect of the loss of breeding adults on a population can be serious. For small populations, this loss can be catastrophic.

From 1987 to 1990, the rate of mortality for breeding adults has averaged an average of 16% per year of the breeding population (5.25 breeding adult mortalities per year).\(^{219}\) From 1991 to 1998, the rate of mortality for breeding adults has been 11.9% per year (5.13 breeding adult mortalities per year).\(^{220}\)

In his book, The Bald Eagle, Stalmaster warns:

“…When a hypothetical population of bald eagles is altered by a 10% change in fertility, sterility or survival, the effects are considerably different. A simulation model predicts that a reduction in survival will have the most

\(^{215}\) Ibid.
\(^{216}\) Lande 1987
\(^{217}\) AGFD 1999a, 2000; Beatty and Driscoll 1996b; Gerrard et al. 1992; Hunt et al. 1992; Stalmaster 1987; USFWS 1993b
\(^{218}\) Gerrard et al. 1992
\(^{219}\) Hunt et al. 1992
\(^{220}\) Beatty and Driscoll 1996b, Beatty and Driscoll unpublished data cited in AGFD 1999a, 2000
profound influence. In fact, a population may be reproducing at the maximum rate, but if the survival of full grown birds is poor, the population can rapidly become extinct. It is for this reason that the killing of bald eagles, especially the adults, has a much more dramatic impact than does the disruption of nesting efforts.\(^{221}\)

The mortality for the Southwestern Desert Nesting Bald Eagle is higher than that necessary to sustain a stable breeding population.\(^{222}\) High mortality for breeding adults threatens the continuing existence of the population.\(^{223}\)

5. **The extremely high presence of Subadults in breeding pairs most likely reflects high adult mortality rates.**\(^{224}\)

As a result of the high mortality in breeding adults, subadults occupy an excessively high presence in breeding pairs.\(^{225}\) AGFD notes:

“…Hunt *et al.* (1992) reported a minimum 16 percent annual mortality rate of breeding Arizona eagles from 1987-1990…combined with the presence of four-year old bald eagles as members of breeding pairs, Hunt *et al.* (1992) concluded that high adult mortality was likely draining the floating adult population toward a critical level…”\(^{226}\)

Non-breeding eagles are recruited into the breeding population by either forming a new pair bond with another non-breeding bird, or, more frequently, replacing the mate of another breeding eagle. Non-breeding eagles come from a “floating” segment of individuals recruited into the breeding population. Subadults in breeding Bald Eagle populations is considered rare and worrisome:

“…The phenomenon of near-adult bald eagles as members of breeding pairs has been considered “rare” (Bent 1937). Twelve subadult plumaged birds were observed holding territories in Arizona from 1987-1990. Since 1991, we have continued to observe eagles in subadult plumage as members of breeding pairs (*n=7*, six 4 year-olds and one 3 year-old). Two four-year-old eagles were paired with adult bald eagles in the establishment of two new territories (Beatty and Driscoll unpublished). If a healthy population of floating adult eagles existed, we would expect that full adult plumaged birds would be present at these new territories as well as replacements on known breeding areas…”\(^{227}\)

\(^{221}\) Stalmaster 1987
\(^{222}\) CBD 2004e
\(^{223}\) Ibid.
\(^{224}\) AGFD 1994b, 1999a, 2000; Hunt *et al.* 1992; SWCBD 1999
\(^{225}\) AGFD 1994b
\(^{226}\) Ibid.
\(^{227}\) Ibid.
AGFD (1994b) continues:

“…Although missing members of pairs are rapidly replaced in Arizona, most known replacements have been young (near-adult or subadult) eagles. Of 39 known vacancies at breeding areas, 15 (38.5) were filled by adults, and 24 (61.5%) by near-adults or subadults…the proportion of young eagles as members of pairs in Arizona is substantially higher than reported for any other Bald Eagle population…The appearance of breeding eagles lacking full-adult plumage suggests an insufficiency of adults in the floating segment…”

AGFD (1999a, 2000) continues to express these same concerns:

“…Subadult breeding bald eagles. In Arizona, subadults have been regularly documented as members of breeding pairs (Hunt et al. 1992, Beatty and Driscoll 1996b, Beatty and Driscoll unpubl. data). In contrast, Gerrard et al. (1992) determined population stability in Saskatchewan was "maintained as a result of the bald eagles deferring first breeding to age six." The persistent presence of three and four year-old breeding bald eagles in Arizona has created concern for the health of the breeding population, especially with the seemingly high occurrence of adult mortality.

Over the past 11 years, 43 of 108 (39.8%) recruitments into the Arizona breeding population were in subadult plumage. From 1987 to 1990, Hunt et al. (1992) identified 39 recruitments into the breeding population, of which 61.5 percent (n=24) were in subadult plumage. From 1991 to 1998, 66 recruitments were identified, 29 percent (n=19) were in subadult plumage (Beatty and Driscoll unpubl. data).

The literature describes few instances or explanations for subadults breeding. Bent (1937) described subadult breeding bald eagles as rare. Hunt et al. (1992) surveyed 14 bald eagle biologists throughout North America on the occurrence of breeding subadults and received nine responses. From these biologist's studies, the known incidence of breeding subadults outside Arizona was 0.02 percent. Breeding subadults were observed in New York (Nye 1983) and Kansas (Mulhern et al. 1983), but were attributed to reintroducing individuals into areas where the species had been nearly extirpated. Palmer (1988) described subadults in breeding pairs occurring in Florida and the Aleutian Islands.

The occurrence of subadults in the Arizona breeding population was an unrecorded phenomenon when first documented. Hunt et al. (1992) believed there were two possible explanations (assuming the absence of emigration or immigration):

\[228\] Ibid.
1) Arizona’s floating adult population could be creating territories at such an accelerated rate that only near-adults are left to fill the gaps left by mortalities in known pairs.

2) High mortality in Arizona breeders is draining itinerant adults, leaving only near-adults to breed.

Based upon Hunt et al.’s (1992) hypotheses, we have no clear answer to the continued presence of subadults in breeding pairs. From 1986 to 1991, only two new pairs entered the population, but since 1991, we have documented 13 new pairs. Many of the pioneer pairs included subadults, which were not from a floating adult population. In 10 of new pairs (where age could be determined), subadults were present in 50 percent (n=5). And while we have recorded immigration and emigration into the population, there has only been one observed instance of each.”

While AGFD (1999a, 2000) maintains that there is “no clear answer to the continued presence of subadults in breeding pairs”, in reality, three facts explain the finding:

1. high adult mortality,
2. a very small, behavioral and reproductively closed population, and
3. the number of known territories (historic, new, and newly discovered) has changed minimally in the last 12 years.

Logic dictates that the earlier AGFD (1994b) explanation for this disturbing phenomenon still stands:

“…The appearance of breeding eagles lacking full-adult plumage suggests an insufficiency of adults in the floating segment…”

Professional timidity in the face of challenging politics accounts for AGFD (1999a, 2000) failure to offer explanation similar to that of AGFD (1994b), for the high percentage of subadults in breeding pairs.

6. Mortality for fledglings is excessive.

Most Southwestern Desert Nesting Bald Eagles die prematurely:

229 AGFD 1999a, 2000
230 AGFD 1999a, 2000; Beatty and Driscoll 1996b; Gerrard et al. 1992; Hunt et al. 1992; Stalmaster 1987; USFWS 1993b
232 Hunt et al. 1992; AGFD 1999a, 2000
233 AGFD 1994b
234 AGFD 1999a, 2000; Beatty and Driscoll 1996b; Hunt et al. 1992; Mesta et al. 1992
“…Of five known cases of mortality among subadults and near-adults in Arizona, all were human caused. Assuming an Arizona origin of all banded breeders, of the 46 Arizona nestlings banded prior to 1986, a minimum of 18 (39%) survived to breeding age (4-5 years old) and a minimum of four (9%) survived through their twelfth year of life…”235

From 1987 through 1998, 97 fledglings have been found dead.236 During this time (1987 – 1999) the population produced only 214 fledglings.237 In other words, 41% (97/214) of the fledglings from 1987 through 1998 were found dead.238 While these figures may include a small number of overlap of pre-1987 fledglings, the fact that few Desert Nesting Bald Eagle survive to adulthood is obvious.239

7. The population’s survival is dependent, in good part, on heroic human support and management by the Arizona Bald Eagle Nestwatch Program (ABENWP).240

The Desert Nesting Bald Eagle would likely already be extinct except for the tireless and heroic efforts of human nest watchers. The amount of risk to which the majority of the most productive nests are exposed is staggering. During the two year period 1996 and 1997, 13,999 human activities and 4000 gunshots were recorded within one half mile from 13 nests!241

The details:

“…Unfortunately, signs, education, and the threat of fines do not deter people from entering BAs. Monitoring by nestwatchers has, and continues to be, a crucial component of Arizona bald eagle management. Nestwatchers intercept people and educate them about the species. In 1996 and 1997, 13,999 human activities and nearly 4000 gunshots were recorded within a kilometer of 13 different nests. Hunt et al. (1992) determined bald eagles at BAs such as Bartlett, Cliff, and 76 would rarely produce young without the aid of nestwatchers.

Signs and limited enforcement are not effective in keeping these areas free from deleterious human activities. As management has increased at Lake Pleasant (more signs, more media, more brochures, better maps, etc.), failure to comply has also increased. During the first 3 years of monitoring, non-compliance with the closure’s southern boundary averaged 5 percent per year. In 1997, it increased to 12 percent. At all BAs with high recreational activity,

235 Hunt et al. 1992
237 AGFD 1999a, 2000
239 Ibid.
241 AGFD 1999a, 2000
nestwatchers are needed to help guide activity away from the active nest, and educate people about the bald eagle's needs…242

Since 1983, 16% of all Southwestern Desert Nesting Bald Eagle fledglings have been saved by direct human intervention.243 In some years these efforts have been “directly responsible for saving up to 60% of a single year's nestlings…”244

AGFD (1999a, 2000) describes the program in detail:

“...Arizona Bald Eagle Nestwatch Program

The ABENWP began as a weekend volunteer effort by the USFS and Maricopa Audubon Society in 1978. Since then, the ABENWP has expanded into a multiagency program contracting 20 biologists annually (Beatty 1990a, 1990b, 1992; Beatty and Driscoll 1994a; Beatty et al. 1995a, 1995b, 1997, 1998). The primary goals of the ABENWP are public education, data collection, and conservation of the species.

Beginning in February, nestwatchers are stationed at 10 to 15 BAs with the highest recreational pressures. The on-site protection and education provided by nestwatchers has contributed to a high percentage of the bald eagle's success. In addition to monitoring the breeding attempt, nestwatchers can identify individual bald eagles in life-threatening situations, making possible a rescue effort by agency biologists. Since 1983, the ABENWP has helped save 50 nestlings and eggs, representing 16 percent of all young fledged in Arizona during that time (Appendix B, Fig. 3).

The ABENWP also indirectly increases productivity through public contacts, education, and proactive protection. Nestwatchers prevent many potential impacts to the breeding cycle by contacting the recreating public before they enter the BA and inadvertently disturb the breeding adults. Clearly, this aspect of the program is most important because of its dual function: 1. protecting the breeding cycle, 2. educating the public about Arizona's bald eagles. Considering the immeasurable percent the ABENWP affects indirectly, and the 16 percent of productivity they directly affect, it is easy to see the value of this project…”245

In 2002, 19% of the fledglings were saved by direct intervention of the nest watchers. (AGFD 2003) USFWS (2003b) continues ABENWP praises:

“The ABENWP coordinates banding of eagles, documents disturbances at nest sites, provides on-site protection, and intervenes as necessary to

242 Ibid.
243 Ibid.
244 USFWS 1992b
245 AGFD 1999a, 2000
reduce harassment or as otherwise needed for the benefit of the eagles. This intervention has proven to be very effective in maintaining the southwestern bald eagle population. The ABENWP has "rescued" up to 50 percent of the fledglings produced in a year. These rescue operations include removing fishline and tackle from nestlings and adults, and returning nestlings to their nests after they fell or jumped out of the nest in response to disturbance or to escape extreme heat. Since the 1980's, the ABENWP has rescued 48 eagles and eggs, and documented 52 cases of fishing line or tackle posing a threat to the nesting eagles and eaglets. At least 15 percent of the bald eagle production is due to assistance provided by the Nestwatch program (U.S. Fish and Wildlife Service 1999).”

ABENWP funding is not secure. Currently, ABENWP funding comes from several sources: Heritage Funds, mandatory Federal agency contributions as mitigation for ESA takings, and volunteer funding. Heritage Funds come from Arizona State Lottery income. Income from the lottery has been decreasing. Legislative attempts at diverting lottery funds from wildlife protective activities have already occurred and will undoubtedly reoccur in the near future. Support for the Heritage Fund from within the conservation community is waning owing to the increasing lack of AGFD conservation advocacy, as well as owing to AGFD’s overt hostility towards conservation community goals.

Removal of the Bald Eagle from the List of Threatened and Endangered Species will terminate mandatory Federal agency funding for ABENWP. Bureau of Reclamation has already asked for clarification on funding termination for its Roosevelt Lake activities. Bureau of Reclamation’s hostile attitude towards the protection of imperiled wildlife (Colorado Squawfish, Gila Topminnow, Huachuca Water Umbel, Humpback Chub, and Southwestern Willow Flycatcher) is well established in the Southwest. Similar hostile attitude has been displayed by the Army Corps of Engineers (Rio Grande Silvery Minnow and Southwestern Willow Flycatcher), Bureau of Land Management (Cactus Ferruginous Pygmy Owl, Desert Tortoise, Huachuca Water Umbel, Loach Minnow, Spikedace, and Southwestern Willow Flycatcher), Bureau of Indian Affairs (Mexican Gray Wolf and Mexican Spotted Owl), Department of Defense (Desert Tortoise, Huachuca Water Umbel, Sonoran Pronghorn, and Southwestern Willow Flycatcher), and the Forest Service (Gila Trout, Gila Topminnow, Loach Minnow, Mt. Graham Red Squirrel, Mexican Spotted Owl, Northern Goshawk, and Spikedace).

USFWS clarification to Bureau of Reclamation confirms that funding continues only “until the bald eagle is delisted.” This applies to all mandatory Federal agency funding for ABENWP:

“The Reclamation requested clarification of reasonable and prudent measure number two. Specifically, your memorandum questions how long Reclamation will be required to provide $5000 in funding per breeding season for the Nestwatch Program at the Tonto BA, and suggests a cut-off date of the year 2000, following the breeding season. The purpose of this reasonable

246 USFWS 2003b
247 USFWS 1996c
and prudent measure is to offset adverse impacts to the bald eagle caused by the recreational facilities [the reasonable and prudent measure comes from a Reclamation action approved by the Service that will result in the loss of more than 20 eagles over the next fifty years]...For this reason, Reclamation is obligated to provide funding to the Nestwatch Program 1) for the life of the Indian Point Recreation facility; or 2) until the bald eagle is delisted; or 3) until such time as it can be clearly demonstrated that the Tonto BA has been abandoned for bald eagle nesting; or 4) until Reclamation can demonstrate that there have been no recreation-related incidents reported by nestwatchers that resulted in abandonment of the nest or loss of young at the Indian Point recreation site for ten consecutive years..."248

Other examples of praise for the ABENWP, as well as documentation of the tenuousness of its funding, are abundant. USFWS (2002a) states:

“The establishment of the Arizona Bald Eagle Management Committee (ABEMC) and Arizona Bald Eagle Nestwatch Program (ABENWP) has been essential to the success of recovery efforts for eagles in the Southwest. The ABENWP coordinates banding of eagles, documents disturbances at nest sites, provides on-site protection, and intervenes as necessary to reduce harassment or as otherwise needed for the benefit of the eagles. This intervention has proven to be very effective in maintaining the southwestern bald eagle population. At least 15 percent of the bald eagle production is due to assistance provided by the Nestwatch program (USFWS 1999). In Arizona, the use of breeding area closures and close monitoring of nest sites through the ABENWP has been and will continue to be essential to the recovery of the species. Ensuring the longevity of the ABENWP is of primary concern to the Service."249

AGFD (1994a) states:

“Presently, there are few binding consultations for any agency to commit funding to existing bald eagle programs under section 7 of the Endangered Species Act. Now, funding assistance by agencies is primarily based upon available funds and where they choose to allocate those dollars.”250

Other examples of the lack of agency commitment abound. The Arizona Republic (2003a) reports in “Desert bald eagles lagging behind”:

“...Driscoll [James Driscoll, Game and Fish’s bald eagle management coordinator] said the state receives $230,000 a year from federal funds and wildlife grants, plus $70,000 from private donations.

248 Ibid.
249 USFWS 2002a
250 AGFD 1994a
He estimated all but one-third of that federal money could be lost after de-listing...

In “Eagles may fly off U.S. endangered list, proposal upsets state’s activists,” the Arizona Republic (2004c) reports,

“The possibility that government funding [for Arizona’s eagle program] could end is not far-fetched, says Henry Messing, a biologist who represents the U.S. Bureau of Reclamation on the eagle management panel. Reclamation contributes $120,000 a year to the program.

‘There were some grumblings this year on the budget review committee,’ Messing said. Reclamation authorities wonder why they should fund things that are not mandatory.

The bureau will provide funds as long as it has funds, according to Messing, who supports delisting. He looks to SRP as a possible bailout.

John Keane, an environmental analyst at SRP, which contributes $30,000 to $50,000 a year to monitoring eagles, said that’s unlikely.”

And in “Do eagles still need protection?” the Arizona Republic (2004f) further reports,

“The Bureau of Reclamation and other agencies have questioned whether eagle activities can be funded at current levels if the bird is delisted.

Jeff Humphreys, a U.S. Fish and Wildlife biologist in Arizona, said, ‘We’ll have to be very aggressive to keep people at the table with their pocketbooks open. The work is done on the cheap, but it’s not cheap.’

According to Tom Gatz, assistant supervisor for Northern Arizona at Fish and Wildlife, budget is a major factor for ensuring the eagles’ progress during the monitoring period. It becomes a matter of choosing priorities for limited funds, based on which animals are in the most trouble…”

8. Reproductive rates are low for the Southwestern Desert Nesting Bald Eagle in comparison to Bald Eagle populations elsewhere.

Reproductive rates for Southwestern Desert Nesting Bald Eagles are lower than known in Bald Eagle breeding areas anywhere else:

“…Productivity rates in Arizona are lower than those recorded throughout North America. From 1975 to 1984, average productivity rates

251 Arizona Republic 2003a
252 AGFD 1999a, 2000; Hunt et al. 1992; USFWS 2003b
were 0.92 young per occupied BA (SD=0.36) when the number of BAs was below 20; since then the average has been 0.78 (SD=0.21). Productivity rates in Alaska (1963 to 1970), Florida (1961 to 1970), Washington (1981 to 1985), and Wisconsin (1983 to 1988), averaged 0.96 young per occupied BA (Sprunt et al. 1973, McAllister et al. 1986, Kozie and Anderson 1991)...

The February 21, 2003, Intra-Service Biological and Conference Opinion on Issuance of a Section 10(a)(1)(B) permit to Salt River Project for Operation of Roosevelt Lake, AESO/SE 2-21-03-F-0003 states:

“Productivity rates are lower in Arizona than the rest of the United States. There were 0.92 average young per occupied breeding area in Arizona before 1984 when there were less than 20 breeding areas, and 0.78 average young per occupied breeding area since 1984, as opposed to 0.96 average young per breeding in Alaska, Wisconsin, Florida, and Wisconsin (Arizona Game and Fish Department in prep., Sprunt et al. 1973, McAllister et al. 1986, Kozie and Anderson 1991). The average productivity rate from 1971 to 2002 on the Verde River was 0.92; the average productivity rate for the rest of Arizona was 0.72.

For the group of Desert Nesting Bald Eagles nesting along the upper Salt River the situation is even more precarious:

“…Through fish sampling and electroshocking during the 1980s and 1990s, AGFD (K. Young, pers. comm.) has documented a decrease in native fish in the upper Salt River. Native suckers, a crucial prey species during the breeding season (Hunt et al. 1992), once present in the 1980s, are now absent from the unregulated river. The lack of native fish species along this stretch of river may have reduced productivity from 0.67 (26/39) in the 1980s to 0.26 (12/47) in the 1990s. Hunt et al. (1992) cited fish diversity as a crucial feature of a suitable breeding location and native suckers as an important prey item in riverine systems…”

9. The most prolific Desert Nesting Bald Eagle breeding areas are showing productivity declines.

Breeding areas responsible for production of the majority of Southwestern Desert Nesting Bald Eagle fledglings are producing less fledglings. AGFD (1994b) states:

“…Biological threats to the population are…productivity declines at the most prolific breeding areas…” (AGFD 1994b)
This is particularly concerning given the fact that good replacement habitat for the declining most prolific breeding areas does not exist. Breeding areas in habitat not as suitable and as productive cannot be expected to make up for the inevitably increasing declines.

In addition, since the majority of the most productive nests are in relatively close proximity to the rapidly growing Phoenix metropolitan area, survivability of these breeding areas is becoming increasingly problematic.

AGFD (1999a, 2000) summarizes this problem:

“…The species' distribution in Arizona is primarily restricted to the Salt and Verde rivers. On the lower parts of these drainages and nearby lakes is where prey is most abundant and the bald eagles are most productive. Not surprisingly, these areas are closest to Phoenix and have the highest amount of recreational activity...The existing productive BAs are the most beneficial to the success of the population. We can not expect pairs breeding in marginal habitat to make up for a loss in productivity at these BAs…

…Maricopa County's human population is expected to double to more than six million over the next 30 years (AZ Republic 3/25/98). The threats posed to breeding bald eagles by the loss of habitat and a booming human population demanding recreation, real estate, and water, will only increase with time...

…Recreational pressures are increasing due to the expansion of the Phoenix metropolitan area, and to the scarcity of water-based recreational opportunities in the desert. Bald eagles nesting along the lower Salt and Verde rivers, Tonto Creek, Alamo Lake, Roosevelt Lake, and Lake Pleasant are vulnerable to disturbance and subsequent failure from increased human activity...

…Future development will affect the suitability of many Arizona BAs due to their proximity to the Phoenix metropolitan area. The effects of encroachment are escalated due to the suitability of habitat and the density of BAs near Phoenix.

Examples of proposed and ongoing development are occurring at the Blue Point, Box Bar, Pleasant, Sheep, and Tonto BAs. A proposed turnaround for river-tubers is being considered below Bulldog Cliffs near the Blue Point BA. A 360-unit housing development and 18-hole golf course are proposed for construction 1.0 miles from the Box Bar BA. The City of Peoria annexed the north shore of Lake Pleasant to develop lakeside resorts. Continued housing, road, and business developments occur along lower Tonto Creek, near the Sheep and Tonto BAs.
Completed projects which may affect bald eagles include campground developments at Roosevelt Lake [loss of 12 nests and eight nestlings or eggs in the next 50 years; nest productivity drops from 50-80% to 35% according to USFWS (1993)] and agriculture at Fort McDowell [45% reduction in nest productivity, 1986-1991 according to USFWS 1992a]. A 100-unit campground with a boat ramp was constructed within 2 miles of the Tonto nest tree; the dirt road leading to the campground was paved 0.25 miles from the nest. Fort McDowell’s agricultural development involved the removal of mesquite bosques, cottonwood trees, and upland desert habitat. This may not present short term problems, but the long term change and lack of riparian regeneration will reduce the area’s ability to support the current number of nesting and foraging bald eagles….\(^{258}\)

According to Arizona Department of Economic Security estimates, Maricopa County will double to 6.2 million by 2039.\(^{259}\) Yavapai County, the cities of Prescott and Prescott Valley coveting the waters of the upper Verde, will double by 2021.\(^{260}\) Cottonwood along the Middle Verde will double by 2022.\(^{261}\) Payson, affecting Tonto Creek, will double by 2044.\(^{262}\)

Disturbance from low-flying aircraft in the metropolitan Phoenix area also continues to be an increasing problem.\(^{263}\) Bald Eagle harassment and deaths have and will continue to occur because of low-flying aircraft.\(^{264}\) This will be discussed in detail in a later section.

10. **Breeding areas along the free-flowing rivers are showing productivity declines.**\(^ {265}\)

The Southwest has already lost nearly all of its free-flowing rivers. Rare stretches survive. Nearly every one surviving is imperiled. Not surprisingly, nesting Bald Eagles are found in many of these remnant stretches of free-flowing rivers. Productivity in the breeding areas is declining in these stretches:

“…Biological threats to the population are…productivity declines at territories along the free-flowing rivers…”\(^ {266}\)

\(^{258}\) AGFD 1999a, 2000
\(^{259}\) DES 2004a
\(^{260}\) DES 2004b
\(^{261}\) ibid.
\(^{262}\) ibid.
\(^{263}\) AGFD 1999a, 2000; USFWS 1993a, 1994c, 1997b, 2002a, 2003b
\(^{265}\) ibid.
\(^{266}\) AGFD 1994b
For the group nesting along the upper Salt River the situation is particularly precarious:

“…Through fish sampling and electroshocking during the 1980s and 1990s, AGFD (K. Young, pers. comm.) has documented a decrease in native fish in the upper Salt River. Native suckers, a crucial prey species during the breeding season (Hunt et al. 1992), once present in the 1980s, are now absent from the unregulated river. The lack of native fish species along this stretch of river may have reduced productivity from 0.67 (26/39) in the 1980s to 0.26 (12/47) in the 1990s. Hunt et al. (1992) cited fish diversity as a crucial feature of a suitable breeding location and native suckers as an important prey item in riverine systems…” 267

11. Desert Nesting Bald Eagle nests on private property are either not producing young or are destined to fail. 268

In spite of the rarity of surviving riparian habitat still capable of supporting breeding Bald Eagles, some private property owners are not motivated or cannot afford to preserve their good fortune. AGFD (1999a, 2000) describes the dismal outlook for the three breeding areas on private land:

“…Nesting pairs on private land presents difficulties for management or monitoring, especially when ownership and land use practices change frequently. Property has recently been sold or is planning to be sold in Camp Verde and Perkinsville BAs. Current owners of the Perkinsville have refused ground access to monitor the BA. The Winkelman BA is surrounded by housing, recreation, and industry. All three of these BAs are in relatively poor bald eagle habitat, and nestlings have not been produced…” 269

The Perkinsville BA was successful in 2000, 2001 and 2003. 270 It failed in 2002. 271 The Camp Verde and the Winkelman BAs continue failing. The Perkinsville BA faces increasing threats with impending Upper Verde River dewatering. 272

267 AGFD 1999a, 2000
269 AGFD 1999a, 2000
270 AGFD 2001a, 2002a, 2004c
271 AGFD 2003
12. Desert Nesting Bald Eagle habitat faces imminent and accelerating loss of increasing amounts of habitat vital for long-term survival.273

Most of the 47 Southwestern Desert Nesting Bald Eagle breeding areas are located in the Salt River and Verde River drainages near the Phoenix metropolitan area.274 Habitat loss to the growing Central Arizona population is increasingly problematic.

The Southwest has already lost more than 90% of its historic riparian habitat.275 This loss of riparian habitat continues owing to increasing development, dewatering via groundwater pumping and diversions, destructive cattle grazing, and lack of vegetation rejuvenating floods. Fifty one percent of all Southwestern Desert Nesting Bald Eagle nests ever known in Arizona have been in riparian trees and snags.276 The nests of the most productive BAs are found in riparian trees.277 Riparian trees are essential for the Desert Nesting population’s survival:

“…RIPARIAN HABITAT…Riparian trees are vital for the continued existence of the most productive BAs in the state…”278

Cottonwood trees in these BAs are not being replaced.279 There is no regeneration owing to lack of the flooding necessary for rejuvenation of riparian vegetation, to development, to cattle grazing.

AGFD (1999a, 2000) summarizes this situation:

“…Present or threatened destruction, modification, or curtailment of its habitat or range

Arizona supports 40 bald eagle BAs with most being located in the Salt and Verde drainages near Maricopa County. This population is not likely to increase substantially or expand its distribution. In contrast, Maricopa County’s human population is expected to double to more than six million over the next 30 years (AZ Republic 3/25/98). The threats posed to breeding bald eagles by the loss of habitat and a booming human population demanding recreation, real estate, and water, will only increase with time.

Riparian habitat. Bald eagles at 11 BAs (Box Bar, Coolidge, Doka, Fort McDowell, Perkinsville, Pinto, 76, Sheep, Sycamore, Tonto, and Winkelman) rely solely on riparian trees to nest. Cottonwood trees in these BAs have become overmature, are dying, and are not being replaced. Regeneration of

274 AGFD 2004d
276 Driscoll 1999
277 AGFD 1999a, 2000; Hunt et al. 1992
278 AGFD 1999a, 2000; USFWS 2003b
279 AGFD 1999a, 2000
key riparian habitat has not occurred in many areas of the Southwest due to many factors (Stromberg 1993).

These 11 BAs represent a significant portion of the population by collectively contributing 22 percent (82/370) of all recorded fledglings since 1971. The Fort McDowell BA has fledged 34 young, second to only the Blue Point BA (35). Additionally, five of these 11 BAs have been in existence for at least 10 years (10, 13, 15, 17, and 26 years).

It is reasonable to expect in the next two decades, the pairs at 7 of these 11 BAs will have fewer trees in which to nest, roost, loaf, preen, and/or hunt. The Box Bar, Coolidge, Doka, Fort McDowell, and Sycamore BAs currently nest in overmature live trees, dying trees, or snags located below dams with little regeneration. Poorly timed water releases (Stromberg et al. 1991), scouring, off-road vehicles, development, grazing, woodcutting, and agriculture threaten the riparian habitat of these areas.

Additionally, the increased storage capacity of Roosevelt Lake threatens the few trees at the Pinto and Tonto BAs. Nest trees at both BAs will die due to inundation and the snags will fall over time. Few to no alternate nest trees exist for the Pinto pair and most of the alternate trees available to the Tonto pair are located near housing communities or recreation areas...

Development. Future development will affect the suitability of many Arizona BAs due to their proximity to the Phoenix metropolitan area. The effects of encroachment are escalated due to the suitability of habitat and the density of BAs near Phoenix.

Examples of proposed and ongoing development are occurring at the Blue Point, Box Bar, Pleasant, Sheep, and Tonto BAs. A proposed turnaround for river-tubers is being considered below Bulldog Cliffs near the Blue Point BA. A 360-unit housing development and 18-hole golf course are proposed for construction 1.0 miles from the Box Bar BA. The City of Peoria annexed the north shore of Lake Pleasant to develop lakeside resorts. Continued housing, road, and business developments occur along lower Tonto Creek, near the Sheep and Tonto BAs.

Completed projects which may affect bald eagles include campground developments at Roosevelt Lake [loss of 12 nests and eight nestlings or eggs in the next 50 years; nest productivity drops from 50-80% to 35% according to USFWS (1993)] and agriculture at Fort McDowell [45% reduction in nest productivity, 1986-1991 according to USFWS 1992a]. Completed projects which may affect bald eagles include campground developments at Roosevelt Lake and agriculture at Fort McDowell. A 100-unit campground with a boat ramp was constructed within 2 miles of the Tonto nest tree; the dirt road leading to the campground was paved 0.25 miles from the nest. Fort McDowell’s agricultural development involved the removal of mesquite bosques, cottonwood trees, and upland desert habitat. This may not present
short term problems, but the long term change and lack of riparian regeneration will reduce the area's ability to support the current number of nesting and foraging bald eagles.

Nesting pairs on private land presents difficulties for management or monitoring, especially when ownership and land use practices change frequently. Property has recently been sold or is planning to be sold in Camp Verde and Perkinsville BAs. Current owners of the Perkinsville have refused ground access to monitor the BA. The Winkelman BA is surrounded by housing, recreation, and industry. All three of these BAs are in relatively poor bald eagle habitat, and nestlings have not been produced.

Individual projects may not present much harm to the continued existence of Arizona breeding bald eagles. However, developers do not focus on the cumulative effects of previous, concurrent, or future projects. Clearly, growth in central Arizona will not cease as accommodations continue to be made for one of the fastest growing urban areas in the country...

Dewatering of the middle portion of the Verde River is accelerating. Base flows, or stream flow during the driest times of the year, are now reduced to that of a small irrigation ditch.

"RIVER BARELY FLOWS – The Verde River dropped down to 12 cubic feet per second (cfs) on several days during June at the Camp Verde White Bridge gage...Despite the low flows, Verde Valley irrigation ditch mangers report there has been adequate flow to serve their customers’ dry season needs..."

Increasing groundwater pumping by the growing population of Cottonwood and Camp Verde now threatens to render this section of the Verde River intermittent. Channelization is also a problem. Both threats are addressed with recent USFWS approval of additional groundwater pumping:

“...The proposed project is the approval, by Reclamation, of CAP water exchange agreements between CWW [Cottonwood Water Works], CVWS [Camp Verde Water System], and the City of Scottsdale...The present proposed project is for CWW and CVWS to assign their CAP water allocation to the City of Scottsdale in return for $3,555,200...which would be used for development of alternative water supplies, primarily from groundwater sources…”

280 AGFD 1999a, 2000
281 Verde Natural Resources Conservation District 1999
282 USFWS 1998
This project’s contribution to dewatering and piecemeal destruction of the middle Verde River is obvious. USFWS discussion of the situation is illustrative:

“…Effects of Groundwater Pumping and Verde River Surface Flow Depletion…there is a hydrologic connection between the Verde Formation [the deep Verde Formation of the Tertiary Age, underlying the regional aquifer system], the Quaternary alluvial deposits along the river corridor [the alluvium of the Quaternary Age which underlies the Verde River channel and its floodplain], and the surface flows of Verde River (Owen-Joyce, 1984 [Owen-Joyce, S.J. 1984. Hydrology of a stream aquifer system in Camp Verde area, Yavapai County, Arizona. Arizona Department of Water Resources Bulletin 3, Phoenix, Arizona. 60pp.])…The Verde River base flow is provided by groundwater discharge from the alluvium and Verde Formation (ADWR, 1994 [Arizona Department of Water Resources. 1994. Arizona Riparian Protection Program: A report to the Governor, President of the Senate and Speaker of the House. Phoenix, Arizona. 507 pp.]). Thus, any withdrawal from either of those portions of the aquifer is expected to eventually deplete Verde River base flows.

Pumping from groundwater aquifers can deplete surface flows in both direct and indirect ways (ADWR, 1994; Glennon, 1995 [Glennon, R.J. 1995. The threat to river flows from groundwater pumping. Rivers 5(2):133-139.]). It can directly deplete surface flow by creating a cone of depression spreading outward from the well that causes surface water to infiltrate the alluvium to fill the resulting dewatered area. It can indirectly deplete surface flow by intercepting groundwater that would have flowed into the stream…

Another important and far-reaching result of increased urban/suburban development will be increased channelization of Verde River and its tributaries. Channelization within developed or developing areas is already increasing. This is illustrated by the five formal consultations that have been completed since 1993 on various flood and erosion repair and protection projects. Channelization has many adverse effects to razorback sucker, including direct habitat reduction by shortening of the river channel, loss of backwater larval and juvenile habitats, increased velocities, disruption of food base, and many others...

...Cumulative Effects of human Population Growth

Growth is projected in Cottonwood to increase by 148% and in Camp Verde to increase by 158% between 1994 and 2040 (Arizona Department of Economic Security 1994). This dynamic growth would lead to increased development, increased contamination, increased wildfires, and increased alteration of the watershed and hydrologic regime.

Cumulative Effects of Economic Development

The growth projected for this region will be manifested through economic development, including housing, golf courses, businesses, industry, roads, schools, and other facilities for the population. These facilities will replace natural vegetation and cover large expanses of the floodplain and watershed with impermeable surfaces. A primary result will be the alteration of the watershed characteristics and changes in the hydrologic and sediment patterns, sources, and volumes...

Cumulative Effects of Future Visitation/Recreation

If all urban/suburban areas in Arizona continue to grow at the existing and anticipated rate, the Verde Valley and the Verde watershed will continue to experience rapid increases in recreational use of both private and public lands. The increase will be particularly focused on the Verde River and its riparian corridor. Bank compaction and erosion, channel morphology changes, riparian vegetation suppression and loss, increased pollution and trash, construction of picnicking another recreational facilities with the riparian corridor, and many other adverse impacts will destroy or adversely alter razorback sucker habitat and habitat for bald eagle prey species. Bald eagle
will be subjected to increasing disturbance effects and may have increased problems with entanglement in monofilament fishing line…”283

USFWS (2000a) states,

“Incidental take statement: Anticipated take: Exceeding this level may require reinitiation of formal consultation. The Service anticipates one pair of bald eagles and associated eggs and/or young, annually, could be taken as a result of this proposed action. The incidental take is expected to be in the form of harassment of foraging bald eagles during spring and summer months.”284

USFWS (2001a) states,

“…riparian habitat loss continues on the lower Verde and Salt Rivers as a result of dam operations, livestock grazing, wood cutting, vehicle use in the floodplain, and agriculture.

Various non-Federal actions in addition to those from direct use of CAP water are also cumulative to the CAP impacts to nine listed species. Human population growth in the Gila River basin, particularly in the Phoenix and other urban areas, is predicted to occur into the future (ADES 2001) and will place greater demands on all natural resources in the basin, especially water. Growth and development will continue to result in changes in watershed condition and watershed functioning affecting water quality and quantity, riparian vegetation, channel morphology, and flood characteristics. Groundwater pumping and other water development in outlying areas, particularly where related to CAP allocation exchanges, will result from the increased population growth fueled by CAP. Groundwater pumping in areas such as the upper San Pedro and the Prescott/Chino Valley area threaten the water supply of streams important to spikedace, loach minnow, Gila topminnow, razorback sucker, and bald eagle. As more people live and recreate in the area, opportunities will also increase for nonnative aquatic species to enter the basin.”285

USFWS (2003b) states:

“…b. Bald eagle - incidental take of bald eagles using nest or perch trees at Roosevelt, and incidental take of no more than 18 fledgling bald eagles resulting from reduced…productivity of bald eagles at Roosevelt during periods of declining water levels…

283 USFWS 1998
284 USFWS 2000a
285 USFWS 2001a
Eight of 9 bald eagle breeding areas on the Verde have used trees for nesting sites. Six of these only have trees available for nesting (as opposed to cliff nesting sites). The number of nest trees available for each pair of eagles below Bartlett Dam has been reduced through the increase in territories, degradation of existing trees, and lack of riparian recruitment (McNatt et al. 1980, Hunt et al. 1992, Briggs 1996, Beauchamp and Stromberg 2001, U.S. Fish and Wildlife Service 2002b). Bartlett cottonwood nest tree #3 was found in 1973, used in 1977 and 1980, and supporting limbs broke underneath the nests in 1978 and 1985 (Hunt et al. 1992). No nests were ever again built in the tree and the nest tree fell prior to 1989 (G. Beatty, U.S. Fish and Wildlife Service, personal observation). A few large cottonwood trees exist at the campground below Bartlett Dam (Hunt et al. 1992); however, there are none left through the Bartlett nest area downstream to Needle Rock and no regeneration is occurring (J. Driscoll, AGFD, pers. comm., G. Beatty, U.S. Fish and Wildlife Service, pers. obser.). It is believed that only two to three nest trees are available for the Needle Rock eagles (J. Driscoll, Arizona Game and Fish Department, pers. comm., G. Beatty, U.S. Fish and Wildlife Service, personal observation). The Box Bar Breeding Area has primarily one cottonwood grove for eagles to use for nesting (J. Driscoll, Arizona Game and Fish Department, pers. comm., G. Beatty, U.S. Fish and Wildlife Service, personal observation). The supporting branch for the Box Bar tree nest #2 fell in 1998. In the past, the Fort McDowell eagles nested and perched in trees along most of the lower Verde River from the Forest/Tribal boundary to Highway 87 bridge, but establishment of the Doka and Sycamore breeding areas has reduced the size of Fort McDowell’s territory. Fort McDowell has had a total of 17 known nest trees used since the 1970s; currently, nests (#15, #16, and #17) are known to exist in three trees (Hunt et al. 1992, J. Driscoll, Arizona Game and Fish Department, pers. comm.). Many of the supporting branches or trees have fallen as the trees have degraded or died (Hunt et al. 1992, J. Driscoll, Arizona Game and Fish Department, pers. comm.). The Doka nest snag #1, previously a live cottonwood used by the Fort McDowell eagles, fell after the 2001 breeding season. Sycamore nest tree #1 supporting branches also have fallen. Similar to the lower Salt River, Verde River dams and dam operations degrade existing eagle tree nesting and perching habitat, and retard riparian regeneration that could replace aging and dying trees (Arizona Game and Fish Department in prep., McNatt et al. 1980, Hunt et al. 1992, Briggs 1996, Beauchamp and Stromberg 2001, U.S. Fish and Wildlife Service 2002b). Operation of Bartlett Dam has altered the hydrological regime of the lower Verde River by reducing the magnitude, frequency and duration of high flow events (Briggs 1996, Beauchamp and Stromberg 2001, U.S. Fish and Wildlife Service 2002b). A consequence of this change is a decrease in the size and complexity of the active channel below Bartlett Dam (Beauchamp and Stromberg 2001, U.S. Fish and Wildlife Service 2002b). A reduction in high flows is concomitant with a reduction in stream power and the ability to re-work sediment (Gordon et al. 1992). Periodic high flows on the lower Verde
have not been sufficient to maintain or continue these processes as smaller flood flows are restricted (U.S. Fish and Wildlife Service 2002b).

Dams are restricting the flow of sediment, and operations are restricting the dynamic hydrological regime that allows sediment to move past the dam and help maintain and regenerate riparian habitat (U.S. Fish and Wildlife Service 2002b). Other land use activities, such as cattle grazing and vehicles also contribute to degradation of existing eagle nesting, perching, and foraging habitat and retard nest tree regeneration on the lower Verde River (Arizona Game and Fish Department in prep., J. Stromberg, Arizona State University, pers. comm., V. Beauchamp, Arizona State University, pers. comm., Hunt et al. 1992, Sommers et al. 2002, U.S. Fish and Wildlife Service 2002b). Below Horseshoe Dam on the Tonto National Forest, automobiles access the floodplain at the ford area near K/A ranch and at the old gauging station/cable cross. Below Bartlett Dam, automobile and recreational use in the floodplain occurs at three areas (about a mile downstream from the dam, at Needle Rock, and at Box Bar). Further downstream on the Fort McDowell Yavapai Nation and Salt River Pima Maricopa Indian Community, recreational activity, including vehicles, occurs in the floodplain. These recreational activities, all-terrain vehicles, etc. adversely affect the establishment and maintenance of tree development (Cole and Landres 1995, Flather and Cordell 1995). Additionally, livestock grazing in the Verde River floodplain on the Fort McDowell Yavapai Nation and Salt River Pima Maricopa Indian Community retard the establishment of riparian trees (U.S. Fish and Wildlife Service 2002b). In addition to dam operations (Stromberg 1993), scouring, off-road vehicles, development, grazing, woodcutting, and agriculture threaten existing lower Verde River riparian habitat (Hunt et al. 1992, Arizona Game and Fish Department in prep.), and inhibit its regeneration. Hunt et al. (1992) described the lower Verde River below Bartlett Dam as “cottonwood trees and mesquite bosques in various stages of decay and thinning.” Arizona Game and Fish Department (in prep.) found that cottonwood trees on the lower Verde River have “become overmature, are dying, and are not being replaced.” Many of the large trees present were there prior to construction of the dam (J. Stromberg, Arizona State University, pers. comm.). Directly below Bartlett Dam, the floodplain has been scoured by high flows, leaving rock cobbles. Further downstream beginning near Needle Rock, riparian vegetation and larger nesting trees are primarily found on terraces further away from the active channel (U.S. Fish and Wildlife Service 2002b). Some mature cottonwoods on the lands of the Fort McDowell Yavapai Nation can be found perched at least 10 feet above the river bottom atop exposed banks. These banks, unprotected by vegetation, are subjected to infrequent, but heavy floods, causing the banks to erode and the trees to fall. In 1995, the Fort McDowell nest tree, nest, and young were toppled into the river as a result of exposed banks and high flows (G. Beatty, U.S. Fish and Wildlife Service, pers. comm.). Old trees along the entire lower Verde river closer to the active channel that pre-date the dam, have significant root scouring, and as a result of decreased sediment deposition, are not protected and may be more easily
toppled during large flood events (J. Stromberg, Arizona State University, pers. comm.). Below Sycamore Creek, salt cedar is flourishing as a result of the interrupted hydrologic regime (U.S. Fish and Wildlife Service 2002b). This creates a significant fire risk to existing nest trees, not previously known to exist along southwestern rivers (U.S. Fish and Wildlife Service 2002b). Hunt et al. (1992) made protecting and improving riparian habitat along the lower Verde River their first habitat management recommendation and suggested that losing the Fort McDowell eagles (as result of the loss of nest trees) might be significant to the population. Cottonwood pole planting projects have occurred along the lower Verde River below Bartlett Dam without much overall success in contributing to quality wildlife habitat. Briggs (1996) described a failed U.S. Forest Service effort from 1979. Over 600 cottonwood and willow poles were planted, but 11 years later only 7 trees appeared healthy with the long-term potential of survival. Lowered groundwater levels and water deprivation were believed to be contributing factors in the project’s failure. Agencies participating in the Southwestern Bald Eagle Management Committee planted cottonwoods on at least two occasions at the Fort McDowell Yavapai Nation (1988 and 2001). Some cottonwoods from 1988 survived that were located near sources of water (C. Sommers, ERO, pers. comm.), but nearly all that were planted in the floodplain near existing eagle nesting areas died from beavers or lack of groundwater. Hundreds of riparian trees were planted in the floodplain along the Verde River on Salt River Pima Maricopa Indian Community in the mid-1990s, but all trees died (G. Beatty, U.S. Fish and Wildlife Service, pers. comm.). We are unable to attribute a percentage or degree to which activity (dam construction/operation or land uses) has caused more damage to bald eagle habitat on the lower Verde River. Beauchamp and Stromberg (2001) found that operation of the dams has likely affected riparian communities by decreasing recruitment of early successional riparian species (willows and cottonwoods) and expansion of later successional species (e.g. mesquites and saltcedar). McNatt et al. (1980) found that Horseshoe and Bartlett dams have led to the demise of cottonwoods on the lower Verde River. This is a common effect of dam construction and operation in the Southwest, and has been observed on numerous river systems (see review in Briggs 1996). Sommers et al. (2002) agree that flow alteration has reduced the frequency and density of cottonwood establishment, but they believe land use factors, particularly grazing and recreation, are even more important than dam construction and operation in limiting native riparian plant communities (also see U.S. Fish and Wildlife Service 2002a, pp. 86-89). However, Vanessa Beauchamp (graduate student, Arizona State University, pers. comm. 2002), believes the effects of the dams and their operation are the most important limiting factors in shaping the riparian plant community. What appears to be clear from examples of land and river management activities throughout Arizona and the Southwest (U.S. Fish and Wildlife Service 2002b) is that each activity by itself, and certainly in combination with each other, are capable of degrading existing bald eagle
Comparison and importance of lower Salt and Verde river bald eagle breeding areas to the rest of Arizona

The lower Salt (below Roosevelt Dam) and lower Verde rivers have been and remain key areas for the recovery and survival of the Arizona and southwestern population of breeding bald eagles. From 1993 to 1999, 40 percent of all known Arizona fledglings were produced from the lower Salt and Verde rivers and, since 2000, 53 percent of the state’s productivity originated there (Table 7). Overall, 46 percent of all the Arizona fledglings produced since 1993 hatched from the lower Salt and Verde rivers. Most recently, the lower Verde River has been responsible for 33 percent of all fledglings since 1999. This is an overwhelmingly large proportion of productivity originating from a relatively small portion of the eagle’s Arizona range. The lower Verde and Salt rivers in this analysis represent about 140 river miles (Hunt et al. 1992), or 40 percent of the combined length of just the Salt and Verde rivers (350 river miles). Eagles also have breeding areas on the Agua Fria, Bill Williams, Little Colorado, San Francisco, San Pedro, and Gila rivers, along Lynx, Tonto, Cibecue, Canyon, and Oak creeks, and forage from tributaries such as the East Verde River, Fossil, West Clear, Carrizo, and Cherry creeks.

Verde River, Horseshoe Reservoir to Salt River confluence, and Salt River downstream of Roosevelt Dam

Operations of the lower Verde and Salt river dams, in conjunction with the presence of the dam structures, will continue to degrade existing bald eagle nesting habitat (including important trees needed for nesting foraging, loafing, feeding, display, and/or sentry perches) and prevent habitat development, maintenance, and regeneration of trees suitable for nesting and perching in the Needle Rock, Box Bar, Fort McDowell, Doka, Sycamore, and Rodeo breeding areas below Bartlett Dam and the Granite Reef Breeding Area below Stewart Mountain Dam (McNatt et al. 1980, Briggs 1996, Beauchamp and Stromberg 2001, U.S. Fish and Wildlife Service 2002b, Arizona Game and Fish Department in prep.; see the Environmental Baseline). Operation of lower Verde and Salt river dams will continue to alter the hydrological regime of the lower Verde and Salt rivers by reducing the magnitude, frequency, timing, and duration of high flow events (Briggs 1996, Beauchamp and Stromberg 2001, U.S. Fish and Wildlife Service 2002b). As a result, the size and complexity of the active channel below Bartlett and Stewart Mountain dams are likely to continue to decline (Beauchamp and Stromberg 2001, U.S. Fish and Wildlife Service 2002b). Attenuation of high flows is concomitant with a reduction in stream power and the ability to re-work sediment (Gordon et al. 1992). The dams will continue to trap sediment, which will further limit opportunities for natural regeneration or managed restoration of riparian habitat (U.S. Fish and Wildlife Service 2002b). Reducing the magnitude, frequency, and duration of high flow events will prevent the

habitat and affecting the development of habitat to maintain existing territories...
establishment of germination sites for cottonwood and willow tree seedlings that require recently deposited, moist, bare sediment (Braatne et al. 1996). Continued high summer flows below Bartlett Dam may scour away seedlings that germinated in the spring (Patten 1998), and reduce the longevity of existing trees (J. Stromberg, Arizona State University, pers. comm.). Continued operation of the Verde dams is expected to result in further establishment of salt cedar, which significantly increases the risk of catastrophic fire (J. Stromberg, Arizona State University, pers. comm., U.S. Fish and Wildlife Service 2002b). Reducing the overall amount of riparian vegetation, coupled with periodic scouring floods, accelerates the loss of established trees (J. Stromberg, Arizona State University, pers. comm.). The loss of the dynamic nature of the Verde River below Bartlett Dam and Salt River below Stewart Mountain Dam will continue to cause degradation of the structure and function of the riparian area. Continued grazing along the lower Verde and Salt rivers is expected to exacerbate adverse effects to riparian vegetation through browsing and trampling of seedling and sapling riparian trees (USFWS 2002b). Continued recreation will result in cutting of trees, destruction of seedling beds by campers and off-highway vehicles, and increased risk of fire due to camp fires and other human activities. The Arizona Game and Fish Department’s (in prep.) draft Bald Eagle Conservation Assessment and Strategy provided a description of what is expected to occur in the future under the current management. They wrote, “it is reasonable to expect in the next two decades, the pairs (below Bartlett Dam) will have fewer trees in which to nest, roost, loaf, preen, and/or hunt. The (lower Verde River) breeding areas currently nest in overmature live trees, dying trees, or snags below dams with little regeneration. Poorly timed water releases, scouring, off-road vehicles, development, grazing, woodcutting, and agriculture threaten the riparian area. Managing agencies must minimize the factors impairing riparian vegetation to maintain the current distribution and abundance of eagles on the lower Verde River...” This document has been reviewed twice by the representatives of the Southwestern Bald Eagle Management Committee, including the U.S. Fish and Wildlife Service, Arizona Game and Fish Department, Reclamation, and SRP (J. Driscoll, Arizona Game and Fish Department, pers. comm.). In the absence of concerted efforts to reverse habitat trends, we expect over the next 50 years that 5 of the lower Verde bald eagle breeding areas dependent on trees for nesting and perching will be lost due to continued riparian habitat degradation, prevention of habitat regeneration, and catastrophic fire. Because the Needle Rock, Box Bar, Fort McDowell, Doka, Sycamore, Rodeo, and Granite Reef breeding areas are in such close proximity, each pair is highly dependent on the existing overmature trees in each breeding area for nesting and foraging, loafing, feeding, display, and/or sentry perches. As these trees continue to die and fall over, territories will be lost because there is little regeneration or growth of younger trees for replacement and as a result, there are not enough trees for nesting and foraging...
We anticipate that the proposed action will result in incidental take, in the form of harm, of bald eagles using nest or perch trees at Roosevelt Lake in conjunction with the permitted activity and over the life of the permit. Harm is expected due to modification or degradation of habitat due to loss of nest and perch trees from inundation or desiccation, and associated effects. Additionally, we anticipate incidental take of no more than 18 fledgling bald eagles over the life of the permit in conjunction with the permitted activity, resulting from reduced productivity of bald eagles that use Roosevelt Lake for foraging during periods of declining water levels over the life of the Permit.

13. The native fishery with which the Desert Nesting Bald Eagle population evolved continues to suffer decline.

Native Arizona sucker spp. (desert and Sonora) spawn in riffles and are a primary prey item for bald eagles during spring. The Desert Fishes Team (2003) states,

“…Six species are extirpated from the basin, five others survive in less than 20% of their original range, and one remains in about 40% of its original range. The distribution and abundance of all listed species extant in the basin has declined since their original listing and the trend is continuing. Few successful recovery and conservation actions have occurred during the 36-year period assessed. Although repatriation has been the primary management effort, it has occurred for only a few of the species, and with limited success.

Recommendations: All of the federally listed species have existing and adequate biologically based recovery plans. However, few recommendations in those plans have been implemented. Additional planning for these species is unnecessary, but the other species need management plans. On-the-ground implementation of plan actions is paramount to conservation and recovery of the species. Existing recovery and conservation strategies and techniques would, if implemented, contribute substantially to stemming the decline of these fishes. Innovative strategies incorporating new knowledge and data are also important. We believe the control and removal of nonnative fishes and other aquatic flora and fauna is the most urgent and overriding need in preventing the continued decline and ultimate extinction of the native fish assemblage of the Basin.

Like the entire indigenous fish fauna of the American southwest, the native warm water fishes of the Gila River watershed (Basin) in central Arizona and southwest New Mexico, USA, and northern Sonora, Mexico, are critically imperiled. In this report, we assess the status of the twelve federal and state

286 USFWS 2003b
287 AGFD 1999a, 2000; CBD 2003b; Desert Fish Team 2003, 2004; Hunt *et al.* 1992; USFWS 2003d
288 Hunt *et al.* 1992
listed, proposed, and/or petitioned warm water species of the Basin. Our assessment concludes that the status of all of these species has continued to decline notwithstanding federal and state protection. Conservation and recovery efforts have been limited in number and scope, and of little long-term effectiveness in stemming declines of these species.

Reasons for decline of these species are well documented in published literature and recovery plans. Introduction and spread of nonnative aquatic species continues to be a major factor in displacement of native species. Habitat destruction from a variety of human activities has been an equal and interactive factor. We believe the control and removal of nonnative fish and certain other aquatic flora and fauna is the most urgent and overriding need in preventing the continued decline and ultimate extinction of the native fish assemblage of the Basin...

These conclusions and recommendations are the culmination of deliberations of the Desert Fishes Team (Team), an independent group of biologists and parties interested in protecting and conserving native fishes of the lower Colorado River basin. The Team was formed to fill the void left by the 2002 disbanding by U.S. Fish and Wildlife Service of its Desert Fishes Recovery Team, and includes biologists and participants from U.S. Forest Service, Bureau of Reclamation, Bureau of Land Management, University of Arizona, Arizona State University, The Nature Conservancy, independent experts, and others.

The Desert Fishes Team (2004) states:

“The distribution and abundance of all [fish] species present in the basin have declined in modern times. This trend continues and is accelerating. Few conservation actions have occurred during the 37-year period assessed. Although repatriation has been the primary management effort, it has occurred for only a few of the species, and with limited success. Most conservation actions have been directed at listed species, with benefits accruing to non-listed species on an incidental basis...

Like the entire indigenous fish fauna of the American southwest, native warm water fishes of the Gila River basin in Arizona and New Mexico, USA, and Sonora, Mexico, are critically imperiled. In this report, we assess the status of seven warm water species of the basin (Agosia chrysogaster longfin dace, Catostomus insignis Sonora sucker, C. latipinnis flannelmouth sucker, Elops affinis machete, Mugil cephalus striped mullet, Pantosteus clarki desert

289 "The Gila River basin has 20 native fish species. In addition to the twelve species considered here, two native trouts are also Federal and State listed. Because they are the only cold water species, and because as game species they have distinctly separate and more active recovery and conservation programs, we chose not to include them in this status report."

290 Desert Fishes Team 2003
sucker, *Rhinichthys osculus* speckled dace)\(^{291}\) that are not listed under the federal Endangered Species Act. We have prepared this report to complement our earlier report on listed warm water species (Desert Fishes Team 2003), and to bring attention to a fauna that has been overlooked, and which is slowly but clearly diminishing.

Flannelmouth sucker, a freshwater species, has already been lost from the Gila River basin, and is declining elsewhere in its range. Longfin dace, Sonora sucker, desert sucker, and speckled dace are freshwater fishes, and all show moderate declines in distribution in modern times from historical, but remain widespread throughout their historical ranges. Striped mullet and machete are salt-water species and infrequent visitors to the lowermost Gila River only when flows connect the lower Colorado River with the Gulf of California. Passage of the Endangered Species Act in 1973 subsequently resulted in 67% of the Gila River basin’s fish species being listed as threatened or endangered. Since then, most management efforts have been directed at recovery for those listed species, with benefits to unlisted species occurring only incidentally. Conservation efforts for unlisted species have been limited in number and scope, and have primarily accrued from efforts to promote listed species.

There have been no conservation efforts for flannelmouth sucker in the Gila River basin. Immediate efforts should be made to restore it through stocking into suitable habitats. Conservation efforts for longfin dace, Sonora sucker, desert sucker, and speckled dace have been limited in number and scope, and of slight long-term effectiveness in stemming their declines. Increased management efforts on their behalf should be instituted. Machete and striped mullet would benefit from restoration of flows in the lower Colorado River.

All species suffer from anthropogenic disruption and fragmentation of watersheds. These actions intensify the accumulative impact of isolated populations becoming extirpated with little potential for re-colonization from adjacent sources (Fagan 2002). Thus, efforts to restore locally extirpated populations are essential to prevent a downward spiral of loss over a metapopulation or watershed level. A community approach when dealing with transplants or range extensions for all fish, including federally listed or proposed species should be followed (Jackson *et al.* 1987). This would allow nonlisted species to be considered for repatriation and protection along with threatened and endangered species where and when appropriate.

Catostomus insignis Sonora sucker. Sonora sucker was widespread and abundant in the Gila and Bill Williams drainages, although it was not collected in the Gila River downstream of the Salt River. It occurs in small to moderate size streams and small rivers up to about 6,500’ elevation, and even

\(^{291}\) The Gila River basin has 21 native fish species, which represents an addition of one species (*Elops affinis*) to the fauna previously reported (Desert Fishes Team 2003, Clarkson 2004). In addition to the seven species considered here, twelve were considered in an earlier report, plus there are two native trouts that are not addressed (Desert Fishes Team 2003).

Modern occurrences of Sonora sucker show it remains in 93 (73%) of the 127 locations in which it was recorded… It has a low probability of local extirpation (Fagan et al. 2002), however, fragmentation of range and isolation of populations could further reduce its occurrence in a watershed. Reasons for decline include dewatering and alteration of habitats, and introduction of nonnative fish that prey upon the species.

There have been few transplants into formerly occupied habitats… Sonora sucker was successfully repatriated into O'Donnell Creek after that stream was renovated to remove nonnative fish, and was stocked in an artificial channel at a casino/resort in the Phoenix metropolitan area. A single individual stocked by Arizona Game and Fish Department into Arnett Creek did not survive, likely due to the stream drying during an extended drought. Because of the incorrect assumption that Sonora sucker is ubiquitous, no conservation actions directly focused on it have been made except for the transplants… Instead, it has benefited indirectly from recovery and conservation actions taken for co-occurring listed species. Protection of existing populations is necessary to prevent its further decline. A program of repatriation into historically occupied habitats is recommended to ensure its continued existence across its range. Additionally, removal of nonnative species from many of its habitats will be required for the species to persist in rivers and larger streams… We recommend Sonora sucker be listed under the Endangered Species Act as threatened because of losses from many localities in the Gila River basin, continuing anthropogenic disturbances to its habitats, and chronic impacts of nonnative species. This is consistent with previous recommendations from the Desert Fishes Recovery Team and federal agencies (Minckley 1993, U.S. Fish and Wildlife Service 1994b).

Flannelmouth sucker no longer occurs in the Gila River basin, a result of dewatering, reservoir construction and other habitat alterations, and introduction of nonnative predatory fishes (Chart and Bergersen 1992, Marsh
and Douglas 1997). Because the species has disappeared from major portions of the lower Colorado River basin, it is considered to have a high probability of local extirpation (Fagan et al. 2002), and indeed is disappearing from its range elsewhere (Bezzerides and Bestgen 2002).

There have been no efforts to reintroduce flannelmouth sucker into waters of the Gila River basin... However, a stocking into the Colorado River to control nuisance aquatic insects near the communities of Bullhead City and Laughlin had the unexpected result of establishing a population (Mueller and Wydoski 2004). A conservation strategy for this species and others has been described for the lower Colorado River (Minckley et al. 2003), and there is an ongoing multi-state effort to formulate management direction for flannelmouth sucker (Anon 2004b)... Flannelmouth sucker should be restored to the Gila River basin... Because it has disappeared from the basin and is declining elsewhere, we recommend flannelmouth sucker be listed under the Endangered Species Act as endangered. This is consistent with previous recommendations from the Desert Fishes Recovery Team and federal agencies (Minckley 1993, U.S. Fish and Wildlife Service 1994b).

Desert sucker remains in 137 (74%) of the 186 locations in which it has been recorded... Dewatering and alteration of habitats and introduction of nonnative species have caused its decline throughout its historical range. Because desert sucker has not disappeared from any significant portion of its range, it is considered to have a low probability of local extirpation (Fagan et al. 2002).

There has been one documented repatriation, which failed due to stream desiccation during long-term drought... Other activities that indirectly benefited desert sucker were done for recovery of listed species... Monitoring of populations and repatriation into previously occupied habitats should be instituted, and remaining populations protected to ensure maintenance of the species... Removal of nonnative fishes from larger streams and rivers will be necessary to ensure the continued existence of the species as an integral part of the native fish assemblage. Because it has disappeared from a large...
number of localities in the Gila River basin, continuing anthropogenic impacts on its habitats, and nonnative species continually impact individuals through predation, we recommend that desert sucker be listed under the Endangered Species Act as threatened, as previously recommended by others (Minckley 1993, U.S. Fish and Wildlife Service 1994).

Increased attention to the health and vigor of these species and their populations is necessary to prevent a slow but inexorable slide towards loss of metapopulations and local extirpation. We recommend 1) Endangered Species Act protection be extended to longfin dace, Sonora sucker, flannelmouth sucker, desert sucker, and speckled dace, 2) an aggressive program be implemented to convert individual streams and complexes within watersheds to refuges for native species through barriers, removal of nonnative species, and repatriation of native fishes, 3) anthropogenic factors that negatively affect habitats be modified to reduce impacts on native fishes, and 4) existing populations of native species be protected and systematic monitoring of their populations be implemented. Few successful recovery and conservation actions have occurred during the past several decades for these fish. Technologies and processes exist to improve the status of these species and should be put into practice. Other innovative techniques and applications, such as development and licensing of species-specific piscicides and design of transgenic fishes to eliminate or reduce populations of nonnative species, should be investigated and deployed as appropriate.

Effective leadership on the part of state and federal agencies responsible for species and habitats will be necessary to stem the decline of these species. We encourage attempts to proactively manage these species along with listed endangered and threatened species via a holistically planned, multi-agency program that will benefit the entire assemblage of native fishes and other native aquatic fauna and flora of the Gila River basin.292

292 Desert Fishes Team 2004
14. Toxic substances remain a problem.293

\textbf{a. Pesticides} 294

The Bald Eagle continues to be threatened by the use of several pesticides, including the insecticides carbofuran, endosulfan, fenthion, phorate, and terbufos.295 All are still found in Arizona,296 though the manufacturer of fenthion has “voluntarily” offered to remove fenthion from the market.297 Hundreds of Bald Eagle deaths have been linked to carbofuran nationwide.298 In 1992, USFWS requested that EPA cancel all registrations for carbofuran, but to no avail.299

Documents secured under the Freedom of Information Act reveal that Bush Administration EPA officials have been meeting secretly with pesticide companies to weaken endangered species protections from pesticides.300 A lawsuit was filed to stop these activities.301

In spite of the lawsuit, the EPA has issued new rules resulting from these secret meetings.302 These new rules weaken the protection of endangered species from pesticides.303 A lawsuit has been filed attempting to stop this weakening of protection for endangered species.304

\textbf{b. DDT and its derivatives are still found in Arizona} 305

DDT and its derivatives are still found in Arizona.306 For many years, anecdotal evidence has persisted concerning DDT use by Arizona farmers and ranchers securing inexpensive supplies in Mexico for use in Arizona. Now there is proof that DDT has been found in the Sycamore BA on the lower Verde River:

“…we did discover toxic levels of DDE [a breakdown product of DDT] in an addled egg from 1997 (Sycamore BA)…”307

295 American Bird Conservancy 2004a, 2004b; CBD 2004c; USFWS 1995

296 EPA 2004c, 2004d, 2004e, 2004f; University of Arizona 2004; USDA 2001

297 American Bird Conservancy 2003

298 American Bird Conservancy 2004b

299 Ibid.

300 Earthjustice 2004a

301 Ibid.

302 Arizona Daily Star 2004, USFWS 2004a, 2004c

303 Earthjustice 2004b

304 Earthjustice 2004c

306 Ibid.

307 AGFD 1999a, 2000, USGS 2004
Mexico instituted a ban on DDT in 1997 to take place over a 10-year period; however, it still may be in use along the Arizona/Mexico border. DDT and its derivatives are still found in Arizona waterways.

c. Chlorfenapyr almost became the next DDT.

New toxic chemicals are now being introduced without adequate testing even though their use results in known and potential adverse effects on riparian species. An example is the class of toxins called Pyrroles. Chlorfenapyr is one of these chemicals. Chlorfenapyr has never been evaluated for potential effects on imperiled species. Its known effects on Mallards include 41% decline in the number of eggs, 44% decline in the number of viable embryos, and 56% decline in the number of normal hatchlings.

Nonetheless, “emergencies” facilitated premature use of chlorfenapyr in Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee and Texas. Undoubtedly, it would have been used by the cotton growers of the Gila River Valley or the Rio Grande Valley suffering similar “emergency,” but for the fact that it was denied registration by the EPA.

d. Heavy metals exposure and contamination of the Desert Nesting Bald Eagle, particularly by mercury, is worrisome.

Toxic levels of mercury have been found in eggs from the Southwestern Desert Nesting Bald Eagle population’s two rivers, the Verde River and the Salt River. Mercury contamination has also been found in the Tonto Creek BA and the Gila River. Tonto Creek joins the Salt River at Roosevelt Lake. AGFD (1999a, 2000) describes the situation:

“…Mercury is present at levels sufficiently high to cause failure in eggs along the Verde, Salt, and Gila rivers…

…we discovered elevated and toxic levels of the mercury in seven Arizona eggs from four different BAs on the Verde, Salt, and Gila rivers and Tonto Creek…

…Heavy metal tests performed on Arizona bald eagle eggs collected from 1977 to 1985, revealed mercury concentrations above those reported for most other North American populations (Grubb et al. 1990). Fish collected from Arizona BAs in 1988 by the USFWS (King et al. 1991) found elevated

308 EPA 2002
309 EPA 2003
311 EPA 1998
312 EPA 1998, Pesticide Action Network 1999
313 EPA 1999, Pesticides Action Network 1999
314 EPA 2000
315 ADEQ 2004a, 2004b; AGFD 1999a, 2000, 2004a, 2004b; EPA 2004b; USFWS 2001d
mercury concentrations in samples from Alamo Lake, Lake Pleasant, the lower Verde River, the Salt River, and Tonto Creek.

Thirteen Arizona bald eagle eggs collected from 1994 to 1997 were analyzed for heavy metals (Beatty et al. unpubl. data). Seven eggs from the Tower, 76, Pinal, and Winkelman BAs had toxic levels of mercury ranging from 2.11 to 8.02 ppm. Elevated levels of mercury between 1.5 and 2.0 ppm were found in three eggs from the Tower and Horseshoe BAs. Lesser concentrations between 1.0 and 1.5 ppm were found in three eggs from the Sycamore, Fort McDowell, and Box Bar BAs. In white-tailed eagles, concentrations of mercury in eggs above 2 parts per million (ppm) (dry weight) were known to impair hatching (Newton 1979), while Ohlendorf (1993) determined mercury concentration in bird tissue greater than 1.5 to 4.5 ppm (dry weight) was toxic…

USFWS (2001d) adds,

“…Concentrations of heavy metals in bald eagle eggs are a concern in Arizona. Thirteen Arizona bald eagle eggs collected from 1994 to 1997 contained from 1.01 to 8.02 ppm dry weight mercury (Beatty et al. unpubl. data). Concentrations in the egg are highly correlated with risk to reproduction. Adverse effects of mercury on bald eagle reproduction might be expected when eggs contain about 2.2 ppm mercury or more. Five of 10 eggs approached or exceeded the 2.2 ppm threshold concentration. What is especially alarming is that mercury concentrations in addled eggs appears to be increasing over time. Addled bald eagle eggs collected in Arizona in 1995-97 contained more than two- to six-times higher concentrations of mercury than eggs collected in 1982-84 (appx. 0.39-1.26 ppm) (K. King pers. comm.).

Bald eagles are generalized predator/scavengers adapted to edges of aquatic habitats. Their primary foods, in descending order of importance, are fish (taken both alive and as carrion), waterfowl, mammalian carrion, and small birds and mammals. Although there are no data for bald eagles and mercury within the Navajo Nation, bald eagles elsewhere in Arizona are exposed to mercury. King et al. (1991) detected elevated levels of mercury in prey items of the bald eagle. Individual concentrations ranged from 0.06 to 0.97 ug/g Hg and highest mean levels were recovered in fish from Lake Pleasant (0.41 ug/g), Salt River (0.21 ug/g), and Alamo Lake (0.19 ug/g). The highest means were above the National Contaminant Biomonitoring Program (NCBP) 85th percentile of 0.17 ug/g and a recommended no observable effects concentration for piscivorous birds of 0.1 ug/g (Eisler 1987). Arizona bald eagle eggs collected between 1977 and 1985 reported elevated levels of mercury when compared to other North American locations (Grubb et al. 1990). Subsequently, thirteen eggs were collected from 1994 to 1997 and revealed mercury concentrations ranging from 2.11 to 8.02 ppm (Beatty et al. 1999a, 2000)
unpublished data). Mercury tissue burdens ranging from 1.5 to 4.5 ppm (dry weight) in birds are toxic (Ohlendorf 1993) and eggs containing 2.3 ppm (dry weight) mercury or more will demonstrate adverse effects (Wiemeyer et al. 1984). Embryos of birds are extremely sensitive and vulnerable to relatively minute concentrations of mercury in the egg.

Both organic and inorganic mercury bioaccumulate, but methylmercury accumulates at greater rates than inorganic mercury. Most mercury in fish or wildlife organisms is in the form of methylmercury (Bloom 1989) as this form is more efficiently absorbed (Scheuhammer 1987) and preferentially retained (Weiner 1995). And almost all of the mercury in bird eggs is methylmercury (Wolfe et al. 1998). Reproductive effects may extend beyond the embryo to adversely effect the juvenile survival rates. Mercury in the eggs of mallards caused brain lesions in hatched ducklings. The adult mallards were fed 3.0 ppm methylmercury dicyandiamide over two successive years. Mercury was accumulated in the eggs to an average of 7,180 and 5,460 ng/g on a wet weight basis in 2 successive years. Lesions included demyelination, neuron shrinkage, necrosis and hemorrhage in the meninges overlying the cerebellum (Heinz and Locke 1975). Diet is the primary route of methylmercury uptake by fish in natural waters, contributing more than 90 percent of the methylmercury accumulated. The assimilation efficiency for uptake of dietary methylmercury in fish is probably 65 to 80 percent or greater. To a lesser extent, fish may obtain mercury from water passed over the gills, and fish may also methylate inorganic mercury in the gut (Wiener and Spry 1996). Developing embryos are the most vulnerable life stage to mercury exposure.

Concentrations in the egg are typically most predictive of mercury risk to avian reproduction, but concentrations in liver have also been evaluated for predicting reproductive risk. The documented effects of mercury on reproduction range from embryo lethality to sublethal behavioral changes in juveniles at low dietary exposure. Reproductive effects in birds typically occur at only twenty percent of the dietary concentrations which produce lethal effects in adult birds (Scheuhammer 1991).

...EPA has committed, as a Conservation Measure, that the human health criteria for mercury be changed by January 2002. Even with the adoption of new human health criteria, the Service anticipates the criteria will not be sufficiently protective of the potential for maternal transfer of harmful concentrations of mercury to vertebrate eggs and embryos. Food chain transfer is the most important exposure pathway in all ecosystems (EPA 1997). Methylmercury is one of the rare compounds which not only bioaccumulates but also biomagnifies across trophic levels such that BAFs for methylmercury are commonly in the millions for top trophic level fish. Listed wildlife species which are high trophic level predators include the bald eagle and California condor. California condor are still dependent on managed feeding stations; otherwise, they feed upon large carcasses of elk, deer, or other mammals (USDI 1996a) and not aquatic species associated with the
Navajo Nation. Because fish and wildlife typically have more restricted diets than humans, they are more susceptible to local contamination. Wildlife, particularly piscivorous wildlife, are often at greatest risk from mercury exposure within any ecosystem (EPA 1997). Even with appropriate bioaccumulation factors for evaluating human fish consumption, the use of humans as the surrogate species to represent the bioaccumulation hazards presented to wildlife is not scientifically supported.

Reproduction is one of the most sensitive toxicological responses, with effects occurring at very low dietary concentrations. Effects of mercury on reproduction are currently likely in bald eagles as demonstrated by concentrations of mercury observed the potential prey of bald eagles in Arizona (King et al. 1991). Embryos of birds are extremely sensitive and vulnerable to relatively minute concentrations of mercury in the egg. Almost all of the mercury in bird eggs is methylmercury (Wolfe et al. 1998). Adverse reproductive effects due to methylmercury are offset by Conservation Measures #1, #2, #3 which recommend toxicological research on piscivorous birds and fishes.”

USFWS (2003b) adds,

“Concentrations of heavy metals in bald eagle eggs are a concern in Arizona. Thirteen Arizona bald eagle eggs collected from 1994 to 1997 contained from 1.01 to 8.02 ppm dry weight mercury (Beatty et al. unpubl. data). Concentrations in the egg are highly correlated with risk to reproduction.

Adverse effects of mercury on bald eagle reproduction might be expected when eggs contain about 2.2 ppm mercury or more. Five of 10 eggs approached or exceeded the 2.2 ppm threshold concentration. Mercury concentrations in addled eggs appears to be increasing over time.

Addled bald eagle eggs collected in Arizona in 1995-97 contained more than two- to six-times higher concentrations of mercury than eggs collected in 1982-84 (appx. 0.39-1.26 ppm) (K. King pers. comm.).”

15. Fishing line and tackle are found in half of Southwestern Desert Nesting Bald Eagle nests. Resulting mortalities in both adults and nestlings have been documented and more are expected.

Half of all breeding areas in Arizona contain fishing line and tackle. Fishing line and tackle are confirmed to have killed at least two nestlings:

317 USFWS 2001d
318 USFWS 2003b
319 AGFD 1994b
320 AGFD 1999a, 2000
“…We have continued to observe monofilament and fishing hooks attached to adult and nestling eagles. Fishing tackle has been found at half of all the breeding areas in Arizona and has killed two nestlings…”

AGFD (1999a, 2000) offers details:

“…Fishing line. Fishing line and tackle have been found in nests and entangling the bald eagles (Appendix C). Since 1986, 62 separate instances and 19 BAs have had fishing line and/or tackle in nests or entangling individuals (Hunt et al. 1992, Beatty 1992, Beatty and Driscoll 1994a, Beatty et al. 1998, Beatty and Driscoll unpubl. data). Two Arizona nestlings are known to have died due to entanglement in fishing line (Beatty 1992, Hunt et al. 1992).

Bald eagles come into contact with fishing line most commonly by catching dead or dying fish with the material still attached. They may also bring fishing line to the nest as nest material. However, the species can encounter fishing line in a variety of other ways. An adult became entangled in discarded fishing line while perched on the shoreline (Beatty et al. 1998). Another adult swallowed fishing line (and possibly a hook) while feeding on a dead fish (Beatty et al. 1998). Adults have brought dead shorebirds and waterfowl to the nest, dead from fishing line entanglement (Hunt et al. 1992, Beatty et al. 1998). In one instance, an angler cast a hook and line directly into a snag nest (Beatty and Driscoll unpubl. data). The persistent occurrence of this litter in nests is a testament to the level of recreational pressures existing in many BAs…”

As the human population of central Arizona increases, so will the accompanying recreational demands on riparian areas. This will inevitably lead to even greater incidences of fishing line and tackle in nests. Consequently, the Southwestern Desert Nesting Bald Eagle will continue suffering increasing adverse effects.

16. Heat stress is already recognized as a leading cause of mortality for nestlings. Decreased productivity has already been documented in areas of local drought effects. Global warming and drought are becoming increasing factors.

Adaptation to the Southwest’s combination of high temperature and low humidity illustrates one of the characteristics that demonstrate the uniqueness of the Southwestern Desert Nesting Bald Eagle population. The sophistication of this adaptability with respect to genetic protection for desert egg survival has already been addressed in the genetics section (page 21).
In spite of the Desert Nesting Bald Eagle’s adaptive prowess to its unique desert ecological niche, the desert heat can still be challenging. In fact, heat stress is the leading cause of known nestling mortalities. USFWS (1990b) describes the situation in 1989 that will most likely become more common:

“We have experienced 2 years of a hot, dry cycle. In 1989 Arizona deserts experienced a total of 143 days of temperatures above 100ºF and in 1990 we experienced a record-breaking 122ºF during a summer heat wave.

It is extremely difficult for adult eagles to incubate eggs or brood young nestlings successfully under these conditions. Older nestlings find it difficult to survive these temperatures. In a few cases they have fallen from the nest cliff while attempting to reach shade. They have also fledged prematurely from nests without shade. In both cases these young eagles seldom survive. If predictions hold true, this hot, dry cycle will continue for quite a few years and, as a result, will continue to cause a depressed production of young eagles from this small population.”

Researchers have studied and documented the challenge already faced by the Desert Nesting Bald Eagle with respect to the desert heat. AGFD (1999a, 2000) reports:

“…Hunt et al. (1992) recorded 46 Arizona bald eagle mortalities from 1987 to 1990 (21 adults, 2 subadults, 23 nestlings)...Twenty-three nestlings died: 7 prefledged due to heat stress…

We have recorded an additional 99 Arizona bald eagle mortalities (41 adults, 7 subadults, 51 nestlings) since 1991 (adults from 1991 to 1998, subadults and nestlings from 1993 to 1998) (Beatty and Driscoll 1996b, Beatty and Driscoll unpubl. data)...A total of 51 nestlings died:…4 were heat stress related…”

Drought and intense heat are part of the baseline challenges this population has faced historically. As global warming increases, however, temperatures will increase and drought cycles will become more frequent. The decreasing water levels at Roosevelt Lake owing to drought are already having a negative effect:

“The effects of decreasing the surface area of Roosevelt Lake on bald eagle productivity from 1993 to 2001, were subtle, but clear and consistent…Eagles from the Pinal Breeding Area laid eggs annually and raised 2 eaglets from 1993 to 1997, however eggs were laid only twice and only one eaglet was reared over the next 5 year period. The Pinto Breeding Area produced 6 eaglets, laid eggs 5 times, and failed twice from 1993 to 1997. Yet from 1998 to 2002, the Pinto eagles only laid eggs 3 times and raised 4 eaglets. Since

326 Hunt et al. 1992
327 USFWS 1990b
328 AGFD 1999a, 2000
1990, these were the first 2 years (1998 and 2000) the Pinto eagles had not laid eggs. The Dupont Breeding Area has been a poor performer, but has performed worse as the years progressed. In 1997 and 1998, eagles laid eggs twice and produced one eaglet. Over the next 4 years, eggs were only laid once, no eaglets were produced, and the breeding area was reported as unoccupied in 2002. The drop in reproductive performance is not that of a complete crash in eagle occupancy or reproduction (like those territories at San Carlos Lake in 2002). But the effects were consistent from 1993 to 2001: eagles with dependency on Roosevelt Lake for food reproductively were less productive as the lake’s surface area declined.\"329

17. Eggshell thinning remains a potential problem for the Southwestern Desert Nesting Bald Eagle.330

Eggshell thinning remains a potential problem in the Southwest. AGFD (1999a, 2000) summarizes the findings:

\textquote{\ldots Eggshell thinning.} Wiemeyer et al. (1984) related moderate eggshell thinning greater than 10 percent to difficulties in reproduction for other bald eagle populations. Anderson and Hickey (1972) stated a population would experience reproductive problems when eggshell thinning has become severe (15 to 20\%) for a period of years.

Eggshell fragments (n=265 sets) from 32 Arizona bald eagle BAs were collected, measured, and averaged by nest, from 1977 to 1997. These means were then compared with a mean from Baja California (0.591 mm), the closest known bald eagle population to Arizona with pre-DDT eggshell measurements to calculate percent thinning.

Since 1977, four different studies have collected and analyzed Arizona bald eagle eggshells. From 1977 to 1985, Grubb et al. (1990) collected 32 eggshell sets from 14 BAs with a mean eggshell thickness of 0.539 mm (range 0.470 to 0.597 mm, SE 0.030) and 8.8 percent thinning. Hunt et al. (1992) collected 71 sets from 23 BAs from 1987 to 1990. They found a mean thickness of 0.562 mm (range 0.455 to 0.651 mm, SE 0.042) and a thinning of 4.9 percent. Mesta et al. (1992) collected 27 sets from 18 BAs in 1991 and 1992, and measured a mean thickness of 0.552 mm (range 0.508 to 0.634 mm) with 6.6 percent thinning. More recently, from 1993 to 1997, 135 sets of eggshell fragments were collected from 27 BAs. A mean thickness of 0.534 mm (range 0.462 to 0.605 mm, SE 0.031) was measured with 9.7 percent thinning (Driscoll and Beatty unpubl. data).

Since 1993, the annual percent thinning exceeded 10 percent in 1994 and 1995. In 1993, the mean was 0.552 mm/6.5 percent thinning (n=13, SD 0.031). But in 1994 and 1995, thinning was higher with a mean of 0.528

329 USFWS 2003b
330 AGFD 1999a, 2000; SWCBD 1999
mm/10.6 percent (n=20, SD 0.029) and 0.530 mm/10.3 percent (n=15, SD 0.031), respectively. Thinning in 1996 and 1997 dropped just below 10 percent, with a mean of 0.532 mm/9.9 percent (n=20, SD 0.033), and 0.532 mm/9.9 percent (n=22, SD 0.031), respectively (Appendix D).”

The exact cause for the eggshell thinning is not known at this time. Organochlorines and heavy metals have been associated with eggshell thinning. Hunt et al. (1992) reports:

“…The USFWS recently analyzed data on heavy metals and organochlorines in fish in central Arizona (King et al 1991). Chlordane and DDE were the most frequently detected organochlorines in fish sampled near eagle nests, but the levels were below that associated with eggshell thinning in bald eagles. However, trace elements, especially mercury, were elevated, as were aluminum, arsenic, copper, and zinc…”

18. **Habitual violation of law and lack of agency resolve increasingly threatens protection of the Southwestern Desert Nesting Bald Eagle.**

On February 7, 1990, USFWS published a Notice of Intent in the Federal Register to downlist the Bald Eagle from Endangered to Threatened throughout its range in the continuous U.S. Efforts to downlist are evident from at least 1989. The attitudinal change accompanying the downlisting contributes to the increasing threats to the continued existence of the Desert Nesting population. This attitude is a factor in perpetuation of the following:

- a. Cattle grazing continues within the riparian habitat critical to the Desert Nesting Bald Eagle.
- b. Dam operations do not release water at times necessary for replenishment of riparian nest trees.
- c. Dewatering of remnant free-flowing rivers continues.
- d. Exotic fish continue to be introduced in native fish habitat.

331 AGFD 1999a, 2000
332 Hunt et al. 1992
334 USFWS 1990a
335 USFWS 1990c
338 AGFD 1999a, 2000; USFWS 1997b, 2003b
340 Desert Fishes Team 2003, 2004;
e. Low flying aircraft continue and will increasingly continue adversely affecting the population.341 Flight advisories are not mandatory and are routinely ignored.342

f. USFWS’ approval of excessive numbers of Desert Nesting Bald Eagle deaths is excessive.343

The attitudinal change that took place in 1990, has now become so blatant that the Assistant Secretary of the Interior is even publicly promoting the Bush Administration desire “to ease restrictions on American bald eagles” without regard for the fragility and imperiled status of the Desert Nesting Bald Eagle.344

a. Cattle grazing continues within the riparian habitat critical to the Desert Nesting Bald Eagle.345

Cattle still graze riparian areas, impeding growth of replacement cottonwood nest trees.346 AGFD (1999a, 2000) says:

“\textit{Riparian habitat}. Bald eagles at 11 BAs (Box Bar, Coolidge, Doka, Fort McDowell, Perkinsville, Pinto, 76, Sheep, Sycamore, Tonto, and Winkelman) rely solely on riparian trees to nest. Cottonwood trees in these BAs have become overmature, are dying, and are not being replaced. Regeneration of key riparian habitat has not occurred in many areas of the Southwest due to many factors (Stromberg 1993).

These 11 BAs represent a significant portion of the population by collectively contributing 22 percent (82/370) of all recorded fledglings since 1971. The Fort McDowell BA has fledged 34 young, second to only the Blue Point BA (35). Additionally, five of these 11 BAs have been in existence for at least 10 years (10, 13, 15, 17, and 26 years).

It is reasonable to expect in the next two decades, the pairs at 7 of these 11 BAs will have fewer trees in which to nest, roost, loaf, preen, and/or hunt. The Box Bar, Coolidge, Doka, Fort McDowell, and Sycamore BAs currently nest in overmature live trees, dying trees, or snags located below dams with little regeneration. Poorly timed water releases (Stromberg \textit{et al.} 1991), scouring, off-road vehicles, development, grazing, woodcutting, and agriculture threaten the riparian habitat of these areas.”347

341 AGFD 1999a, 2000; USFWS 1993a, 1994c, 1997b, 2002a, 2003b
342 AGFD 1999a, 2000, 2001a, 2002a, 2003, 2004c; Arizona Republic 1989
343 AGFD 1994b; USFWS 1992d, 1993a, 1994c, 1996b, 1997b
344 Arizona Republic 2004h
345 AGFD 1999a, 2000; Driscoll 1999; USFWS 1997b, 1998, 2002a, 2003b
346 Ibid.
347 AGFD 1999a, 2000
USFWS says:

“Yet, riparian habitat loss continues on the lower Verde and Salt Rivers as a result of dam operations, livestock grazing, wood cutting, vehicle use in the floodplain, and agriculture.”348

“Some of the continuing threats and disturbances to bald eagles include…overgrazing and related degradation of riparian vegetation…”349

“…livestock grazing in the Verde River floodplain on the Fort McDowell Yavapai Nation and Salt River Pima Maricopa Indian Community retard the establishment of riparian trees.”350

“Continued grazing along the lower Verde and Salt rivers is expected to exacerbate adverse effects to riparian vegetation through browsing and trampling of seedling and sapling riparian trees.”351

“Other land use activities, such as cattle grazing…also contribute to degradation of existing eagle nesting, perching, and foraging habitat and retard nest tree regeneration on the lower Verde River (Arizona Game and Fish Department in prep., J. Stromberg, Arizona State University, pers. comm., V. Beauchamp, Arizona State University, pers. comm., Hunt et al. 1992, Sommers et al. 2002, U.S. Fish and Wildlife Service 2002b).”352

“Sommers et al. (2002) agree that flow alteration has reduced the frequency and density of cottonwood establishment, but they believe land use factors, particularly grazing and recreation, are even more important than dam construction and operation in limiting native riparian plant communities (also see U.S. Fish and Wildlife Service 2002a, pp. 86-89). However, Vanessa Beauchamp (graduate student, Arizona State University, pers. comm. 2002), believes the effects of the dams and their operation are the most important limiting factors in shaping the riparian plant community. What appears to be clear from examples of land and river management activities throughout Arizona and the Southwest (U.S. Fish and Wildlife Service 2002b) is that each activity by itself, and certainly in combination with each other, are capable of degrading existing bald eagle habitat and affecting the development of habitat to maintain existing territories.”353

348 USFWS 2001a
349 USFWS 2002a, 2002b, 2003b
350 USFWS 2003b
351 USFWS 2002b, 2003b
352 USFWS 2003b
353 Ibid.
b. Dam operations do not release water at times necessary for replenishment of riparian nest trees.354

AGFD (1999a, 2000) says:

“…Poorly timed water releases (Stromberg \textit{et al.} 1991), scouring, off-road vehicles, development, grazing, woodcutting, and agriculture threaten the riparian habitat of these areas [Box Bar, Coolidge, Doka, Fort McDowell, and Sycamore BAs].”355

USFWS says:

“Yet, riparian habitat loss continues on the lower Verde and Salt Rivers as a result of dam operations…”356

“Some of the continuing threats and disturbances to bald eagles include entanglement in monofilament fish line and fish tackle; overgrazing and related degradation of riparian vegetation; malicious and accidental harassment, including shooting, off-road vehicles, recreational activities (especially watercraft), and low-level aircraft overflights; alteration of aquatic and riparian systems for water distribution systems and maintenance of existing water development features such as dams or diversion structures…”357

Operation of Bartlett Dam has altered the hydrological regime of the lower Verde River by reducing the magnitude, frequency and duration of high flow events (Briggs 1996, Beauchamp and Stromberg 2001, U.S. Fish and Wildlife Service 2002b). A consequence of this change is a decrease in the size and complexity of the active channel below Bartlett Dam (Beauchamp and Stromberg 2001, U.S. Fish and Wildlife Service 2002b). A reduction in high flows is concomitant with a reduction in stream power and the ability to re-work sediment (Gordon \textit{et al.} 1992). Periodic high flows on the lower Verde have not been sufficient to maintain or continue these processes as smaller flood flows are restricted (U.S. Fish and Wildlife Service 2002b).

Dams are restricting the flow of sediment, and operations are restricting the dynamic hydrological regime that allows sediment to move past the dam

354 AGFD 1999a, 2000; USFWS 1997b, 2003b
355 AGFD 1999a, 2000
356 USFWS 2001a
357 USFWS 2003b
and help maintain and regenerate riparian habitat (U.S. Fish and Wildlife Service 2002b)…

Beauchamp and Stromberg (2001) found that operation of the dams has likely affected riparian communities by decreasing recruitment of early successional riparian species (willows and cottonwoods) and expansion of later successional species (e.g. mesquites and saltcedar). McNatt et al. (1980) found that Horseshoe and Bartlett dams have led to the demise of cottonwoods on the lower Verde River. This is a common effect of dam construction and operation in the Southwest, and has been observed on numerous river systems (see review in Briggs 1996)…”

“…However, Vanessa Beauchamp (graduate student, Arizona State University, pers. comm. 2002), believes the effects of the dams and their operation are the most important limiting factors in shaping the riparian plant community. What appears to be clear from examples of land and river management activities throughout Arizona and the Southwest (U.S. Fish and Wildlife Service 2002b) is that each activity by itself, and certainly in combination with each other, are capable of degrading existing bald eagle habitat and affecting the development of habitat to maintain existing territories…

Operations of the lower Verde and Salt river dams, in conjunction with the presence of the dam structures, will continue to degrade existing bald eagle nesting habitat (including important trees needed for nesting foraging, loafing, feeding, display, and/or sentry perches) and prevent habitat development, maintenance, and regeneration of trees suitable for nesting and perching in the Needle Rock, Box Bar, Fort McDowell, Doka, Sycamore, and Rodeo breeding areas below Bartlett Dam and the Granite Reef Breeding Area below Stewart Mountain Dam (McNatt et al. 1980, Briggs 1996, Beauchamp and Stromberg 2001, U.S. Fish and Wildlife Service 2002b, Arizona Game and Fish Department in prep.; see the Environmental Baseline). Operation of lower Verde and Salt river dams will continue to alter the hydrological regime of the lower Verde and Salt rivers by reducing the magnitude, frequency, timing, and duration of high flow events (Briggs 1996, Beauchamp and Stromberg 2001, U.S. Fish and Wildlife Service 2002b). As a result, the size and complexity of the active channel below Bartlett and Stewart Mountain dams are likely to continue to decline (Beauchamp and Stromberg 2001, U.S. Fish and Wildlife Service 2002b). Attenuation of high flows is concomitant with a reduction in stream power and the ability to re-work sediment (Gordon et al. 1992). The dams will continue to trap sediment, which will further limit opportunities for natural regeneration or managed restoration of riparian habitat (U.S. Fish and Wildlife Service 2002b). Reducing the magnitude, frequency, and duration of high flow events will prevent the establishment of germination sites for cottonwood and willow tree seedlings that require recently deposited, moist, bare sediment (Braatne et al. 1996). Continued high summer flows below Bartlett Dam may scour away seedlings...
that germinated in the spring (Patten 1998), and reduce the longevity of existing trees (J. Stromberg, Arizona State University, pers. comm.). Continued operation of the Verde dams is expected to result in further establishment of salt cedar, which significantly increases the risk of catastrophic fire (J. Stromberg, Arizona State University, pers. comm., U.S. Fish and Wildlife Service 2002b). Reducing the overall amount of riparian vegetation, coupled with periodic scouring floods, accelerates the loss of established trees (J. Stromberg, Arizona State University, pers. comm.). The loss of the dynamic nature of the Verde River below Bartlett Dam and Salt River below Stewart Mountain Dam will continue to cause degradation of the structure and function of the riparian area.”358

c. Dewatering of remnant free-flowing rivers continues.359

Dewatering of the middle portion of the Verde River is accelerating:

“RIVER BARELY FLOWS – The Verde River dropped down to 12 cubic feet per second (cfs) on several days during June at the Camp Verde White Bridge gage…Despite the low flows, Verde Valley irrigation ditch managers report there has been adequate flow to serve their customers’ dry season needs…”360

Increasing groundwater pumping by the growing population of Cottonwood and Camp Verde threatens to render this section of the Verde River intermittent:

“…The proposed project is the approval, by Reclamation, of CAP water exchange agreements between CWW [Cottonwood Water Works], CVWS [Camp Verde Water System], and the City of Scottsdale…The present proposed project is for CWW and CVWS to assign their CAP water allocation to the City of Scottsdale in return for $3,555,200…which would be used for development of alternative water supplies, primarily from groundwater sources…”361

USFWS (1998) continues:

“…Effects of Groundwater Pumping and Verde River Surface Flow Depletion…there is a hydrologic connection between the Verde Formation [the deep Verde Formation of the Tertiary Age, underlying the regional aquifer system], the Quaternary alluvial deposits along the river corridor [the alluvium of the Quaternary Age which underlies the Verde River channel and its floodplain], and the surface flows of Verde River (Owen-Joyce, 1984 [Owen-Joyce, S.J. 1984. Hydrology of a stream aquifer system in Camp Verde area, 358 Ibid.
360 Verde Natural Resources Conservation District 1999)
361 USFWS 1998
The Verde River base flow is provided by groundwater discharge from the alluvium and Verde Formation (ADWR, 1994 [Arizona Department of Water Resources. 1994. Arizona Riparian Protection Program: A report to the Governor, President of the Senate and Speaker of the House. Phoenix, Arizona. 507 pp.]). Thus, any withdrawal from either of those portions of the aquifer is expected to eventually deplete Verde River base flows.

Pumping from groundwater aquifers can deplete surface flows in both direct and indirect ways (ADWR, 1994; Glennon, 1995 [Glennon, R.J. 1995. The threat to river flows from groundwater pumping. Rivers 5(2):133-139.]). It can directly deplete surface flow by creating a cone of depression spreading outward from the well that causes surface water to infiltrate the alluvium to fill the resulting dewatered area. It can indirectly deplete surface flow by intercepting groundwater that would have flowed into the stream...

Growth is projected in Cottonwood to increase by 148% and in Camp Verde to increase by 158% between 1994 and 2040 (Arizona Department of Economic Security 1994). This dynamic growth would lead to increased development, increased contamination, increased wildfires, and increased alteration of the watershed and hydrologic regime.

Cumulative Effects of Economic Development

The growth projected for this region will be manifested through economic development, including housing, golf courses, businesses, industry, roads, schools, and other facilities for the population. These facilities will replace natural vegetation and cover large expanses of the floodplain and watershed with impermeable surfaces. A primary result will be the alteration of the watershed characteristics and changes in the hydrologic and sediment patterns, sources, and volumes…”

USFWS (2001a) adds:

“Groundwater pumping in areas such as the upper San Pedro and the Prescott/Chino Valley area threaten the water supply of streams important to spikedace, loach minnow, Gila topminnow, razorback sucker, and bald eagle.”

Prescott is out of water. Prescott and Prescott Valley plan to dewater the Upper Verde:

“City officials unveiled a plan for a pipeline that could carry water from the Big Chino Basin to several communities in the Prescott area…”

“Verde Valley fears Prescott will dry river…he [Cottonwood Mayor Ruben Jauregui] and others living in the towns of Cottonwood and Clarkdale and the Camp Verde area wonder if one of the state’s last major year-round free flowing rivers will be little more than a dry wash in the future.

That’s because on the other side of Mingus Mountain to the southwest, the rapidly growing Prescott, Prescott Valley and Chino Valley area is moving ahead with plans to build a pipeline near the headwaters of the Verde in the Big Chino Basin.

The cities would then pump more the 4.5 billion gallons of water annually allotted to them by state law 20 years ago.

The pumping could begin by the end of next year. A recent report by the U.S. Geological Survey that about 80 percent of the Verde’s headwaters

362 USFWS 1998
363 USFWS 2001a
364 ADWR 1999
366 Arizona Republic 2000
come from the Big Chino basin has set off alarms throughout the Verde Valley…” 367

“New draft study supports Big Chino contribution to river…U.S. Geological Survey scientists offered an overview of their new draft study Wednesday that adds a new layer of understanding of the upper Verde River system…she [Laurie Wirt] is even more confident that the Big Chino supplies at least 80 percent of the upper Verde’s flow, with nearly all the rest coming from the Little Chino sub-basin to the south where Prescott sits.” 368

“Updated study still says Prescott pumping will impact river… PRESCOTT VALLEY – A geologist and hydrologist who analyzed the potential impacts of Prescott’s plan to pump groundwater from the Big Chino Sub-basin conclude that the pumping would reduce the flow of the Verde River.

U.S. Geological Survey Scientist Emeritus Ed Wolfe, a geologist, and retired U.S.G.S. hydrologist Bill Meyer previously made the same conclusion when they conducted a free analysis of the impacts of Prescott’s plan to pump from the CV Ranch northwest of Paulden… If Prescott follows through with its plan to pump 8,717 acre-feet of groundwater annually from the neighboring Big Chino Sub-basin into its Little Chino Sub-basin, the city will reduce the flow of the river by 6 percent in five years and at least 36 percent (8.9 cubic feet per second) in 100 years, the scientists concluded. 369

d. Exotic fish continue to be introduced in native fish habitat. 370

AGFD (1999a, 2000) says:

“Native fish populations. Fish diversity in Arizona is a crucial component to suitable breeding habitat (Hunt et al. 1992). Along the free-flowing and regulated portions of the Salt, Verde, and Gila rivers and Tonto Creek, maintaining native sucker populations is especially important. Non-native fish have out-competed, predated upon, and subsequently replaced native fish in many parts of our central Arizona rivers (Rinne and Minckley 1991) 371

USFWS (2001a) says:

“…nonnative species were imported by humans, starting with common carp in 1885 (Gilbert and Scofield 1898). Since that time, at least 50 species of nonnative fish have been introduced (AZ State Univ., Geographic Information

367 Arizona Republic 2001
368 Chino Valley Review 2004
369 Prescott Daily Courier 2004b
370 Desert Fishes Team 2003, 2004;
371 AGFD 1999a, 2000; Rinne and Minckley 1991
Systems database of fish records 2001) into the Gila River basin, and there are other records of incidental occurrences of another 10 to 15. Many nonnative invertebrates, amphibians, reptiles, plants, and disease organisms have also been introduced. These species have been purposefully introduced through sport, bait, biocontrol, and ornamental fish use and releases through aquaculture, aquarium, and generalized “bait bucket” activities. They have also been accidentally introduced through interbasin water transfers, aquarium and pet releases, and inclusion with other species being purposefully stocked. Nonnative aquatic species have had major detrimental impacts on native aquatic fauna and have been a major factor in the listing of spikedace, loach minnow, Gila topminnow, razorback sucker, desert pupfish, Colorado squawfish, Gila trout, and Apache trout (Steffrud 1984, USFWS 1975, 1985a, 1986a, 1986b, 1986c, 1987, 1991). Species which depend upon the aquatic fauna, such as bald eagle, have also experienced serious adverse effects from nonnative aquatic species (AGFD 2000)...

For all of the above 9 species [Gila topminnow, razorback sucker, desert pupfish, Colorado squawfish, spikedace, loach minnow, bald eagle, Gila trout, Apache trout], controlling the nonnative species threat is essential, in varying degrees, to the survival of the species. This includes 1) stabilizing the existing nonnative aquatic species component in the listed species habitats through prevention of introduction and spread of nonnative species into previously unoccupied areas, and 2) removing or reducing existing nonnatives species populations. Even for the listed species in good and increasing status, failure to accomplish these objectives is likely to result in eventual extirpation and/or extinction...

The effects of CAP to the nine listed species is additive to the already highly deteriorated environmental baseline of the Gila River basin aquatic ecosystem. The status of most of the nine species is poor and declining. Remaining habitats are highly altered, making many of them conducive to colonization by nonnative species, which may be able to use different habitats than the natives. Many of the former habitats of the eight fish are now occupied by nonnative species to the exclusion of any occupation by the native species. Unless nonnative aquatic species can be controlled and further incursions prevented, recovery is not likely for any of these species and their continued existence may be in peril. For the bald eagle, the southwestern population could suffer declines from existing levels if nonnative aquatic species that are deleterious to their preferred prey, which includes nonnatives, are not controlled.

Nonnative aquatic species include fishes, aquatic and semi-aquatic mammals, reptiles, amphibians, crustaceans, molluscs (snails and clams), insects, zoo- and phytoplankton, parasites, disease organisms, algae, and aquatic and riparian vascular plants. They may affect native fish and other aquatic fauna, including the eight fish species considered in this opinion, through predation (Meffe et al. 1983, Meffe 1985, Marsh and Brooks 1989, 1991).

All of the nine listed species are highly vulnerable to adverse effects from nonnative aquatic species. The Gila basin had a naturally depauperate aquatic fauna and native aquatic species, including the eight fish considered here, did not evolve with any significant predation or competition (Carlson and Muth 1989). This evolutionary history makes them highly vulnerable to adverse effects from nonnative species. The bald eagle, although it will readily use many nonnative fish as food, may be adversely affected if the fish fauna becomes dominated by nonnative species less available to capture, such as has occurred with flathead catfish replacement of native fishes in the upper Salt River (AGFD 2000). It may also be affected if nonnative-induced habitat changes make prey capture problematic, such as if giant salvinia reaches Lake Pleasant and covers the reservoir to the level experienced elsewhere (USGS 2001). Giant salvinia is a floating plant recently introduced into the Colorado River and which has a very high likelihood of entering the CAP aqueduct in the near future. For more information on giant salvinia, see the background document.

Introduction and spread of nonnative species is among the most serious and rapidly growing environmental problems today (Elton 1958, MacDonald et al. 1986, Coblentz 1990, McKnight 1993, Rosenfeld and Mann 1992, Simberloff et al. 1997, Claudi and Leach 2000). It is documented as a factor adversely affecting bald eagle in portions of its range in the southwest and elsewhere (McClelland et al. 1983, AGFD 2000, Claudi and Leach 2000). It is also well documented as a major factor in the decline of southwestern native fishes, including the eight considered in this opinion (Miller 1961, Propst et al. 1986, Propst et al 1988, Carlson and Muth 1989, Miller et al. 1989, Aquatic Nuisance Species Task Force 1994, Cohen and Carlton 1995, Lassuy 1995). Minckley (1991:145) succinctly summarized the situation for the aquatic fauna when he said, “Native fishes of the American West will not remain on earth without active management, and I argue forcefully that control of nonnative warmwater species is the single most important requirement for achieving that goal…”
CAP is an interbasin water transfer that will, like most interbasin water transfers, transport nonnative species across basin and subbasin boundaries (Davies et al. 1992, Meador 1992, 1996, Stefferud and Meador 1998, Claudi and Leach 2000). CAP has already transported nonnative striped bass into the Gila basin (AGFD unpub. data) and likely already has, or soon will, introduce Asian clam into the Santa Cruz subbasin (USFWS 1999b). In addition to direct transport of nonnative aquatic species, the CAP system provides a means of spread for species introduced through aquaculture, the aquarium trade, sport fish stocking, biological control, and bait-bucket transfer (Figure 3). Unauthorized stocking and “bait bucket” spread of species by the public is significantly increased by CAP through increased access by the public to nonnative species and to open waters, such as the aqueduct, recharge projects, created wetlands, and other features of CAP (Claudi and Leach 2001). Aquatic habitats created by CAP water, or water made available by other use of CAP water, provide enhanced habitat and opportunities for stocking nonnative aquatic species. Nonnative grass carp and mosquitofish have already been introduced directly into the CAP and interconnected features (such as recharge areas) for biological control, and introduction of black carp has been proposed (Bawden 1994, FWS unpub. data, J. Garza, CAWCD, pers. comm., Oct. 1997). Due to objections by the Service and Reclamation, that proposal has since been dropped (CAWCD 2001). Aquaculture in the aqueduct has been considered, but is not planned at the present time.

Nonnative species will leave CAP and enter the Gila River basin waters through connections with other canal systems, irrigation releases, groundwater recharge, bait-bucket transfer, water storage in Lake Pleasant, recreational lakes, and accidental releases due to technical failures or emergencies. Ponded waters from CAP or CAP in-lieu water will form habitat highly suited for nonnatives and will be stocked with nonnative species, intentionally or unintentionally, serving as sources for nonnative dispersal into surrounding waters. “Artificial waters seem to serve as stepping stones for exotic species as they spread geographically.” (Blinn and Cole 1991:110)

CAP has a project life of 100 years. Over that lengthy period the Service is certain that more than the 1 to 2 species that have already moved via CAP, will be introduced or assisted in their spread by CAP. CAP is an aquatic “highway” reconnecting human-isolated fragments of the Gila basin surface water and substantially enhancing the ability of aquatic species to move throughout the system. This connection will not benefit native fish, but will benefit nonnative aquatic species by providing enhanced opportunities for movement between the Colorado River and Gila basin and between subbasins of the Gila River.

Over the 100-year project life substantial changes are expected in the project, including water use, technology, human population, available nonnatives, climate trends, and other factors. Therefore, this analysis uses a
broad scale approach, focusing on existing data on movement of species already occurring through the CAP aqueduct and connected canal systems (Grabowski et al. 1984, Mueller 1989, 1997, Clarkson 1998, 1999, and 2001, Bettaso 2000)...and through other interbasin water transfers... In addition, we assessed information on existing specifics of CAP and the Gila River basin aquatic ecosystem to determine that nothing about CAP indicates it is sufficiently different from other interbasin water transfers to support a presumption that it would not fit into the general pattern illustrated in Table 4. Although significant impediments to species movement through the CAP system exist (CAWCD 1995) they do not prevent such movement (e.g. striped bass, white bass, Asian clam) nor are they any greater than those overcome by species moving through interbasin water transfers elsewhere (Rubinoff and Rubinoff 1968, Guiver 1976, Laurenson and Hocutt 1985, Swift et al. 1993).

Nonnative species are extremely hard, if not impossible, to remove once established (Aquatic Nuisance Species Task Force 1994). If possible, control or removal can be costly, such as the predicted annual costs of $90 million for ruffe control (Great Lakes Fishery Commission 1992, as cited in Courtenay 1995). It may also entail use of toxic substances that may be unpopular with the public and may affect many species besides the target nonnative (DeMarais et al. 1993, Inchausty and Heckmann 1997, Finlayson et al. 2000). Therefore, survival and recovery of the spikedace, loach minnow, Gila topminnow, razorback sucker, desert pupfish, Colorado squawfish, Apache trout, and Gila trout, and the continued success of bald eagle, require proactive prevention of the invasion or spread of nonnatives to the maximum extent possible...

Spikedace, loach minnow, Gila topminnow, razorback sucker, and bald eagle are all expected to be seriously adversely affected by introduction and spread of nonnative aquatic species through the CAP. The degree of vulnerability of their populations and presently unoccupied recovery areas to CAP mediated nonnatives is variable. Some, such as Aravaipa Creek and those in the middle Gila River above Ashurst Hayden Dam are close to, and have direct routes from, the CAP aqueduct. Others, such as those in the upper Salt River drainage, have a number of dams intervening between that area and the aqueduct and will be affected by CAP only indirectly through nonnative spread due to bait bucket transport of species made more accessible by CAP, or by species that can move overland and use CAP as a staging area in their colonization efforts. The four fish live primarily in medium-to-warmer water habitats that are likely to be successfully colonized by nonnative aquatic species moving out from the CAP aqueduct or its related facilities. The nesting population of bald eagle in the Gila basin lives, and feeds on fish, along similar warmer water habitats...

Bald eagle...Take of bald eagle is anticipated, in the form of harm, through alteration of the quantity and quality of the food base which impairs
feeding. Take may also occur if nonnative species, such as giant salvinia, hinder accessibility of fish to eagle capture…

Construction and maintenance of fish barriers on the upper Verde River and lower Fossil Creek, where eagle territories are nearby and wintering eagles exist, may result in take of bald eagles through harassment or harm by hindrance of access to feeding areas, and other disruptions of breeding, feeding, or sheltering. Take as a result of nonnative species removal projects is not considered here. Such projects will require additional section 7 consultation…

The level of take from nonnative introduction and spread is not quantifiable at this time because it is indeterminable what the cause and effect relationship may be to eagle populations from the future introduction of a nonnative aquatic organism (i.e. plants, vertebrates, invertebrates). Although some level of take can reasonably be expected to occur, the level could range from insignificant to catastrophic, depending on what type of nonnative organism enters the streams and waters where eagles are located. Thus, the identification of a new nonnative species to these systems presents a danger/risk that if not immediately ameliorated could result in excessive take.”

The Desert Fishes Team (2003) says:

“Like the entire indigenous fish fauna of the American southwest, the native warm water fishes of the Gila River watershed (Basin) in central Arizona and southwest New Mexico, USA, and northern Sonora, Mexico, are critically imperiled. In this report, we assess the status of the twelve federal and state listed, proposed, and/or petitioned warm water species of the Basin. Our assessment concludes that the status of all of these species has continued to decline notwithstanding federal and state protection. Conservation and recovery efforts have been limited in number and scope, and of little long-term effectiveness in stemming declines of these species.

Reasons for decline of these species are well documented in published literature and recovery plans. Introduction and spread of nonnative aquatic species continues to be a major factor in displacement of native species. Habitat destruction from a variety of human activities has been an equal and interactive factor. We believe the control and removal of nonnative fish and certain other aquatic flora and fauna is the most urgent and overriding need in preventing the continued decline and ultimate extinction of the native fish assemblage of the Basin…”

372 USFWS 2001a
373 "The Gila River basin has 20 native fish species. In addition to the twelve species considered here, two native trouts are also Federal and State listed. Because they are the only cold water species, and because as game species they have distinctly separate and more active recovery and conservation programs, we chose not to include them in this status report."

374 Desert Fishes Team 2003
Desert Fishes Team (2004) says:

“Modern occurrences of Sonora sucker show it remains in 93 (73%) of the 127 locations in which it was recorded… It has a low probability of local extirpation (Fagan et al. 2002), however, fragmentation of range and isolation of populations could further reduce its occurrence in a watershed. Reasons for decline include dewatering and alteration of habitats, and introduction of nonnative fish that prey upon the species…

Additionally, removal of nonnative species from many of its habitats will be required for the species to persist in rivers and larger streams… We recommend Sonora sucker be listed under the Endangered Species Act as threatened because of losses from many localities in the Gila River basin, continuing anthropogenic disturbances to its habitats, and chronic impacts of nonnative species. This is consistent with previous recommendations from the Desert Fishes Recovery Team and federal agencies (Minckley 1993, U.S. Fish and Wildlife Service 1994b)…

Flannelmouth sucker no longer occurs in the Gila River basin, a result of dewatering, reservoir construction and other habitat alterations, and introduction of nonnative predatory fishes (Chart and Bergersen 1992, Marsh and Douglas 1997)…

Desert sucker remains in 137 (74%) of the 186 locations in which it has been recorded… Dewatering and alteration of habitats and introduction of nonnative species have caused its decline throughout its historical range. Because desert sucker has not disappeared from any significant portion of its range, it is considered to have a low probability of local extirpation (Fagan et al. 2002).

There has been one documented repatriation, which failed due to stream desiccation during long-term drought… Other activities that indirectly benefited desert sucker were done for recovery of listed species… Monitoring of populations and repatriation into previously occupied habitats should be instituted, and remaining populations protected to ensure maintenance of the species… Removal of nonnative fishes from larger streams and rivers will be necessary to ensure the continued existence of the species as an integral part of the native fish assemblage. Because it has disappeared from a large number of localities in the Gila River basin, continuing anthropogenic impacts on its habitats, and nonnative species continually impact individuals through predation, we recommend that desert sucker be listed under the Endangered Species Act as threatened, as previously recommended by others (Minckley 1993, U.S. Fish and Wildlife Service 1994).

The entire native fish fauna of the Gila River basin is biologically imperiled, as are many other obligate aquatic taxa (Williams et al. 1989, Warren, Jr. and Burr 1994, Arizona Game and Fish Department 1996, U.S. Fish and Wildlife Service 1999a, 1999b, Desert Fishes Team 2003, Clarkson
Nonnative species continue to expand in range and abundance, and habitat deterioration through water development and watershed alteration present a consistent threat to habitats (Miller 1961, Minckley and Deacon 1968, Minckley and Rinne 1991, Tyus and Saunders, III 2000)…

Increased attention to the health and vigor of these species and their populations is necessary to prevent a slow but inexorable slide towards loss of metapopulations and local extirpation. We recommend 1) Endangered Species Act protection be extended to longfin dace, Sonora sucker, flannelmouth sucker, desert sucker, and speckled dace, 2) an aggressive program be implemented to convert individual streams and complexes within watersheds to refuges for native species through barriers, removal of nonnative species, and repatriation of native fishes, 3) anthropogenic factors that negatively affect habitats be modified to reduce impacts on native fishes, and 4) existing populations of native species be protected and systematic monitoring of their populations be implemented. Few successful recovery and conservation actions have occurred during the past several decades for these fish. Technologies and processes exist to improve the status of these species and should be put into practice. Other innovative techniques and applications, such as development and licensing of species-specific piscicides and design of transgenic fishes to eliminate or reduce populations of nonnative species, should be investigated and deployed as appropriate.\375

e. Low flying aircraft continue and will increasingly continue adversely affecting the population.\376 Flight advisories are not mandatory and are routinely ignored.\377

As the metropolitan Phoenix population grows, low level aircraft traffic increases also:

“…Low-flying aircraft. BAs near the metropolitan Phoenix area not only receive a high level of human activity from the ground, but disturbance from low-flying private aircraft has also increased. Although more concentrated around cities with airports, this activity has been observed in the remote BAs not normally subjected to human activity. With an increased human populations and an increase in demand for tourism flights, this activity has a potential to affect statewide productivity. Low-flying private aircraft can have a detrimental affect on the breeding cycle by flushing an incubating adult which could cause the eggs to break. Although we have not directly linked a nest failure to low-flying personal aircraft, the adults reaction to this activity is cause enough for concern.

\375 Desert Fishes Team 2004
\376 AGFD 1999a, 2000; USFWS 1993a, 1994c, 1997b, 2002a, 2003b
In addition to low-flying private aircraft, low-flying military and Emergency aircraft is a concern for BAs on the lower Salt and Verde rivers, and under military training routes (MTR). Apache helicopters from the Boeing test area, Maricopa County’s Sheriff Department, and Emergency AirEvac helicopters have been recorded less than 150 feet over active nests. Additionally, most of Arizona is low-level flight training for the U.S. Air Force, and a maze of MTR’s cover the state. Although this type of aircraft may not bother bald eagles due to their fast nature, the resulting noise and sonic booms can flush an incubating adult.

In previous years, AGFD has worked with the Federal Aviation Administration and the Arizona Department of Transportation to establish a 2000 foot above ground level (AGL) advisory along the Salt and Verde drainages. Even though the advisory is marked on the Arizona Aeronautical Maps, most pilots disregard the advisory. The AGFD has also worked with Luke A.F.B. to modify their MTR’s to avoid bald eagle BAs…”

USFWS evaluated the 1994, Department of the Air Force proposal to widen and/or realign segments of military training routes in Arizona. USFWS, acknowledged the loss of nine eagles or eggs and 18 disturbances per breeding season. Cumulatively, over the 50-year period this will result in the loss of 450 eagles or eggs and in 900 disturbances.

f. USFWS’ approval of Desert Nesting Bald Eagle deaths is excessive.

To date, even with ESA protection, USFWS has approved Federal activities responsible for the deaths of at least 29 Southwestern Desert Nesting Bald Eagles in the last decade. These activities will cumulatively result in 491 taking deaths over the next 50 years. According to AGFD (1994b) 30 percent of occupied eagle nesting territories in Arizona may be adversely affected by these planned projects:

“…Overall, 30 percent of all occupied territories (n=27) in 1994…may be adversely affected by currently planned projects…”

An AGFD (1994a) memo is very illustrative:

“The Service [USFWS] said the change in status is complex on paper and striking in the reduced protection a bird has under section 9. “Take” under threatened status does not include protection of the bird’s habitat as it does
under endangered status. Additionally, the downlisted status could alter the
perception of “recovery” by agencies resulting in lack of proactive
management and support for existing programs.

The definition of “take” is different between endangered and threatened
status in section 9 beginning at part 9.2e. The Endangered Species Act (ESA)
delegates protection of a threatened species to other federal acts protecting
the species in question. The ESA offers no additional protection of its own. In
the case of bald eagles the protection would fall under the Bald and Golden
Eagle Protection Act and the Migratory Bird Treaty Act. What these acts lack
is the protection of habitat for the bald eagle. This makes permits (grazing,
recreation, water-use) easier to acquire and increases the difficulty in reaching
a jeopardy decision when writing biological opinions.

The definition of “take” under the Endangered Species Act allows the
Service more flexibility when addressing habitat loss and cumulative effects.
The Service is faced with making a “jeopardy” or “non-jeopardy” decision
based upon whether a project will affect the continued existence of the bald
eagle in the Southwest. If the answer is “no,” “reasonable and prudent
measures” are identified to reduce incidental take. These measures are
mandatory, but may not significantly alter the timing, scope or other aspects of
the project. In these cases, the USFWS does not have the authority to
significantly alter projects for the benefit of the species. When a project does
warrant a “jeopardy” decision, the Service can alter a project for the benefit of
the bird. By reducing the bird’s status to threatened, the Service’s ability to
reach jeopardy determinations based on loss of habitat and therefore its ability
to alter projects for the benefit of the eagle will be greatly reduced...

The beginning of section 7a.1 states that “all federal agencies
shall...carry out programs for the conservation of endangered species and
threatened species listed...” This is to occur regardless of any decision made
by the USFWS or an outcome of a consultation. In reality, agencies only
perform these activities when forced and view a non-jeopardy decision as a
permit to move forward often with little regard for endangered species.

Presently, there are few binding consultations for any agency to commit
funding to existing bald eagle programs under section 7 of the Endangered
Species Act. Now, funding assistance by agencies is primarily based upon
available funds and where they choose to allocate those dollars. The Service
believes that if eagles are downlisted, the perception of “recovery” could result
in reduced support for programs which support proactive management and
protection. Approximately 63 percent ($101,000) of all bald eagle dollars
comes from agencies other than AGFD. A reduction in these programs would
result in reduced productivity of breeding bald eagles...

Not only does habitat protection assist the bald eagle, but it contributes
to protection of riparian vegetation, streams and the animals living in those
ecosystems. Clearly, our most precious habitat in Arizona is riparian. Eagles
are a barometer for the health of these systems. In central Arizona, the most successful and dependable nesting sites of the past have shown declines. Downlisting the species to threatened not only reduces the protection for the eagle, but also for the entire central Arizona river ecosystem. Stating that the eagle is no longer endangered indirectly suggests that central Arizona rivers are also less endangered and are able to withstand additional development...

The bird becomes less “recoverable” as development persists in central Arizona. As populations increase in rural Arizona and the Phoenix metropolitan area, so does the demand for development, easier access, more recreation, and improved facilities. The Service takes into account these foreseeable trends when arriving at their decisions under endangered status. If habitat protection is removed from consideration when evaluation a project because the bald eagle is downlisted to threatened, we can expect a decline in the Arizona bald eagle population.”

On February 7, 1990, USFWS published a Notice of Intent in the Federal Register to downlist the Bald Eagle from Endangered to Threatened throughout its range in the contiguous U.S. Efforts to downlist where evident at least from 1989. By 1994, the attitudinal change was very graphic. On November 16, 1994, USFWS provided to the Department of the Air Force the license to (1) destroy nine Desert Nesting Bald Eagles or their eggs, and to (2) perpetrate 18 disturbances per breeding season. Over the 50-year life of the project, USFWS provided the Air Force license to cumulatively destroy 450 eagles or eggs and cause 900 disturbances. USFWS provided the Air Force with such license without acknowledging the fact that such an enormous loss to a small, ecologically, behaviorally, and reproductively isolated population would jeopardize its survival!

The attitudinal change that took place in 1990, has become so blatant that the Assistant Secretary of the Interior is even publicly promoting the Bush Administration desire “to ease export restrictions on American bald eagles” without regard for the fragility and imperiled status of the Desert Nesting Bald Eagle.

“…It [the USFWS] also is proposing [to the United Nations’ Convention on International Trade in Endangered Species] to ease export restrictions on American bald eagles because their populations have dramatically improved in the contiguous 48 states, Manson [Assistant Interior Secretary Craig Manson] said.”

384 AGFD 1994a
385 USFWS 1990a
386 USFWS 1990c
387 USFWS 1994c
388 Ibid.
389 Ibid.
390 Arizona Republic 2004h
391 Ibid.
19. The USFWS, itself, continues to warn of increasing dangers to the survival of the Desert Nesting Bald Eagle.\[392\]

Section 7 of the ESA requires that all Federal agencies consult with USFWS concerning all activities that may adversely affect species on the List of Threatened and Endangered Species. While USFWS now proposes to remove the Southwestern Desert Nesting Bald Eagle from this List, it continues to confirm that the Southwestern Desert Nesting population will increasingly face expanding dangers.

The January 21, 1993, USFWS Biological Opinion for the U.S. Bureau of Reclamation A-Cross Road, Indian Point Recreation Site, Tonto Creek Riparian Unity, and Roosevelt Lake operating levels, states:

“…Environmental Baseline…while significant recovery has probably taken place ["Following the banning of domestic use of DDT in 1972"], the bald eagle remains somewhat tenuously established in the Southwest. Various reports and records suggest that nesting bald eagles may have been more widely distributed in Arizona in the past. Historic records strongly suggest approximately 20 bald eagle BAs which are not known to have been occupied in the last decade (Hunt et al. 1992 [Hunt, W.G., D.E. Driscoll, E.W. Bianchi, and R.E. Jackson. 1992. Ecology of bald eagles in Arizona, Parts I-V. Report to the U.S. Bureau of Reclamation, Contract 6-CS-30-04470. BioSystems Analysis, Inc. Santa Cruz, California.]). These records may indicate that factors are at work which limit further recovery or population expansion. Those factors would compound the stresses of a naturally harsh environment for breeding bald eagles. Especially near population centers, eagle breeding sites face continually increasing threats from malicious and accidental harassment, including shooting, off-road vehicles (ORVs), low aircraft overflights, loss of nesting and foraging habitat from riparian degradation, and lethal entanglement in fishline (Hunt et al. 1992).

The Southwest bald eagle population is exposed to increasing hazards, from a regionally increasing human population. These include extensive loss and modification of riparian breeding and foraging habitat through clearing, changes in groundwater levels, and changes in water quality. Hazards also include increasing human disturbance from urban, rural and recreational encroachment into breeding habitat. These include a host of threats documented by Stahlmaster (1987) [Stahlmaster. M.V. 1987. The bald eagle. Universe books. New York, New York. 227 pp.], such as shooting; collision with vehicles, aircraft, transmission lines and structures; poisoning; and electrocution.

Much of the Southwest bald eagle population is exposed to the pressures described above. Half of Arizona’s 30 known breeding sites are located on rivers and near reservoirs that are easily and frequently accessed by the public, providing the potential for these threats. The Arizona Bald Eagle

Nestwatch Program (ABENWP), administered by AGFD, continues to document disturbance at nest sites, and frequently intervenes to reduce these impacts. This intervention has proven not only effective, but perhaps crucial in maintaining the southwestern population. While the effects of impact prevention (e.g. public education) are difficult to quantify, measurements of other intervention are available. Up to 50% of some years’ eagle reproduction has been salvaged by ABENWP “rescue” operations. These include removing fishline and tackle from nestlings, returning nestlings into nests after they fell or jumped out in response to disturbance or to escape extreme heat, and rescuing eggs or young from nests that were being inundated by rising reservoir water levels...

...These authors [Hunt et al. 1992] found that nest success was highest (85%) in BAs on free-flowing creeks, and averaged near 50% at a BA providing only a reservoir, with no river or creek habitat...

...whether or not this (the Tonto BA) and other BAs will persist with increasing human activities remains unclear. In recent years, Tonto and several other BAs have become established on lower river reaches, while the historic BAs discussed above, generally on upper watersheds, remain unoccupied. This may be because habitat conditions, specifically riparian habitats, remain too degraded to support BAs in upper watersheds (D. Driscoll, pers. comm.).

...From 1950 to 1992, the Base and lower portion of the nest tree have been inundated 20 times, for periods ranging from 6 to 204 days with an average of 88 days (BOR 1992)...Because of their close proximity, elevations are expected to be similar to those for Tonto #1 nest and tree [for Tonto #2 nest]...[The proposed (and subsequently approved) action allows the lake level from 2136 feet to 2151 feet.]

...Cumulative Effects of the Proposed Action...Future Federal actions are subject to the consultation requirements established in Section 7 and, therefore, are not considered cumulative in the proposed action.

The Tonto BA occurs on Federal Land and is primarily affected by factors controlled or permitted by Federal agencies. However, the Service anticipates that some cumulative effects will occur. As the urban human
The November 16, 1994, USFWS Biological Opinion on Proposal to Widen and/or Realign Segments of Four of the Nine Military Training Routes in Arizona states:

“…The southwestern bald eagle population is exposed to increasing hazards from a regionally increasing human population. These include extensive loss and modification of riparian breeding and foraging habitat through clearing, changes in groundwater levels and the natural hydrograph, and changes in water quality. Hazards also include increasing human disturbance from urban and rural encroachment and recreation (e.g., collisions with vehicles, aircraft, transmission lines and structures, poisoning, electrocution, shooting; Stahlmaster 1987 [Stahlmaster, M.V. 1987. The bald eagle. Universe Books. New York, New York. 227 pp.]…Following the banning of domestic use of the pesticide DDT in 1972, the Arizona bald eagle population has increased. However, while significant recovery has taken place, the bald eagle remains somewhat tenuously established in the Southwest. Approximately 20 historic site records strongly suggest the historic presence of bald eagle nest sites that have not been occupied during the last decade (Hunt et al. 1992 [Hunt, W.G., D.E. Driscoll, E.W. Bianchi, and R.E. Jackson. 1992. Ecology of bald eagles in Arizona. Part A: Population overview. Report to U.S. Bureau of Reclamation, Contract 6-GS-30-04470. Biosystems Analysis, Inc., Santa Cruz, California]). These observations suggest factors are at work that are currently limiting further recovery or population expansion. These factors may compound the stresses of a naturally harsh environment for breeding bald eagles. Particularly near population centers, eagle breeding sites face continually increasing threats from malicious and accidental harassment, including shooting, off-road vehicles (ORVs), low aircraft overflights, loss of nesting and foraging habitat from riparian degradation, and lethal entanglement in fishline (Hunt et al. 1992).

Much of the southwestern bald eagle population is exposed to the pressures described above. Half of Arizona’s 34 known breeding sites are located on rivers and near reservoirs that are easily and frequently accessed by the public, providing the potential for these threats. The Arizona Bald Eagle Nest Watch Program (ABENWP) continues to document disturbance at nest sites and frequently intervenes to reduce harassment. This intervention has proven not only effective, but perhaps crucial in maintaining the southwestern population. Up to 50% of a given year’s reproduction has been salvaged by ABENWP “rescue” operations. These include removing fishline and tackle from nestlings and returning nestlings to nests after they fell or jumped out in response to disturbance, or to escape extreme heat. Protection of breeding

393 USFWS 1993a
and feeding areas is crucial in maintaining the growth the population has experienced since 1972. Riparian wetland and other wetland habitats must be maintained or enhanced for this species to continue to move toward recovery…"

“…Bald eagles are particularly susceptible to disturbance both on breeding and wintering grounds (Mansi et al. 1987 [Manci, K.M., D.N. Gladwin, R. Villella, and M.G. Cavendish. 1987. Effects of aircraft noise and sonic booms on domestic animals and wildlife: a literature synthesis. National Ecology Research Center, Fort Collins, CO. 158 pp.], Lamp 1989 [Lamp, R.E. 1989. Monitoring the effects of military air operations at Naval Air Station Fallon on the biota of Nevada. Nevada Department of Wildlife, 90 pp.], Ehrlich et al. 1992 [Ehrlich, P.R., D.S. Dobkin, and D. Wheye. 1992. Birds in jeopardy: the imperiled and extinct birds of the United States and Canada, including Hawaii and Puerto Rico. Stanford University Press, Stanford, California. 259 pp.]). Observations obtained by nest watchers for ABENWP have documented numerous instances where low-level jet aircraft using MTRs have startled nesting bald eagles and chicks, and passed within close proximity (both above and below) to eagles flying around nesting and foraging areas. The elevation and lateral distance at which low-level flights occur near bald eagle nesting areas is of particular concern because eagles regularly fly to 610 m (2,000 ft) above the surrounding landscape. This puts eagle at risk of collision with low-flying aircraft traveling at speeds that do not enable pilots to avoid bird strikes. The Draft EA documents 62 bird strikes on six MTRs for the period 1990-1993, but gives no data on the species affected. The potential for collisions with eagles also puts pilots and aircraft at considerable risk…”

The March 24, 1997, USFWS Biological Opinion for rerouting of an existing Navapache Power powerline on the Blue River in Greenlee County, Arizona, states:

“…Although not considered a separate subspecies, bald eagles in the southwestern United States are considered a distinct population for the purposes of recovery efforts and section 7 consultation under the Act (USFWS, 1982 [U.S. Fish and Wildlife Service. 1982. Bald eagle recovery plan (southwestern population). Albuquerque, NM. 65 pp.]; 1986b [U.S. Fish and Wildlife Service. 1986b. Memorandum from Director to Regional Directors, re: Jeopardy standard under the Endangered Species Act. Washington, D.C. March 6, 1986.]). Southwestern bald eagles constitute a distinct population, distinguishable by morphology, breeding chronology and geographic isolation. Southwestern bald eagles are also distinct behaviorally, frequently nesting on cliffs, a phenomenon rare or absent outside this geographic region. The southwestern bald eagle nests early, with eggs laid in January or February. This is believed to be a behavioral adaptation to avoid the extreme desert heat of midsummer. The young eagles remain in the vicinity of the nest until June (Hunt et al., 1992 [Hunt, W.G., D.E. Driscoll, E.W. Bianchi, and R.E. Jackson. 394 USFWS 1994c

86

Case 2:07-cv-00038-MHM Document 35-2 Filed 09/13/2007 Page 121 of 176
1992. Ecology of bald eagles in Arizona, Parts I-V. Report to the U.S. Bureau of Reclamation, Contract 6-CS-30-04470. BioSystems Analysis, Inc. Santa Cruz, California.)…The majority of the population inhabits Arizona, distributed along the Salt, Verde, Gila and Bill Williams rivers and several major tributaries. Although the status of the southwestern population is on an upward trend, the population remains small and under threat from a wide variety of factors…”

The December 29, 1997, USFWS Biological Opinion for the safety of dams modifications at Horse Mesa Dam located on the Salt River states:

“…Arizona bald eagles demonstrate unique behavioral characteristics in contrast to bald eagles in the remaining lower 48 states. Eagles in the Southwest frequently construct nests on cliffs. By 1992, of the 111 nests known, 46 were in trees, 36 on cliffs, 17 on pinnacles, 11 in snags, and one on an artificial platform…Bald eagles in the southwest are additionally unique in that they lay eggs in January or February, which is early compared with bald eagles in other areas. It is believed that this is a behavioral adaptation to allow chicks to avoid the extreme desert heat of midsummer…”

…The establishment of the Southwestern Bald Eagle Management Committee (SWBEMC) and Arizona Bald Eagle Nestwatch Program (ABENWP) has been essential to the success of recovery efforts for eagles in the Southwest…The ABENWP coordinates banding of eagles, documents disturbances at nest sites, provides on-site protection, and intervenes as necessary to reduce harassment or as otherwise needed for the benefit of eagles. This intervention has proven to be very effective in maintaining the southwestern bald eagle population. The ABENWP has “rescued” up to 50 percent of the fledglings produced in a year. These rescue operations include removing fishline and tackle from nestlings and adults, and returning nestlings to their nests after they fell or jumped out of the nest in response to disturbance or to escape extreme heat…”

…the Arizona population remains small and under threat from a variety of factors. Threats persist largely due to the proximity of bald eagle breeding areas to major human population centers and recreation areas. Additionally, because water is a scarce resource in the Southwest, recreation is concentrated long available water courses. Some of the continuing threats and disturbances to bald eagles include entanglement in monofilament fish line and fish tackle; overgrazing and related degradation of riparian vegetation; malicious and accidental harassment, including shooting, off-road vehicles, recreational activities (especially watercraft), and low-level aircraft overflights; alteration of aquatic and riparian systems for water distribution systems and maintenance of existing water development features such as dams or diversion structures; collisions with transmission lines; poisoning; and

395 USFWS 1997a
electrocution. In Arizona, the use of breeding area closures and close monitoring of nest sites through the ABENWP has been and will continue to be essential to the recovery of the species...

...The series of dams and reservoirs along this portion of the Salt River has greatly altered the river's hydrologic regime and greatly affected aquatic and riparian habitats associated with the river. In the bald eagle breeding areas associated with Roosevelt Lake in the broad valley of the Tonto Basin, eagles generally place their nests in large cottonwood trees. The narrow, steep canyons where Apache, Canyon, and Saguaro lakes have been created, limit the potential for establishing stands of large cottonwood and willow trees..."^396

The March 30, 1998, USFWS Biological Opinion for assignment to the City of Scottsdale of CAP [Central Arizona Project] water allocations belonging to Cottonwood Water Works, Inc. (CWW) an the Camp Verde Water System, Inc. (CVWS), states:

“...Arizona bald eagles are considered distinct behaviorally from bald eagles in the remaining lower 48 states in that they are frequently construct nests on cliffs. Of 111 nests known in 1992, 46 were in trees, 36 on cliffs, 17 on pinnacles, 11 in snags, and one on an artificial platform...Bald eagles in the southwest are additionally unique in that they lay eggs in January or February, which is early compared with bald eagles in other areas. It is believed that this is a behavioral adaptation to allow chicks to avoid the extreme desert heat of midsummer...

...the population remains small and under threat from a variety of factors. Threats persist largely due to the proximity of bald eagle breeding areas to major human population centers. Additionally, because water is a scarce resource in the southwest recovery region, recreation is concentrated along available water courses. Some of the threats and disturbances to bald eagle include entanglement in monofilament (fishing line) and fishing hooks, overgrazing and related degradation of riparian vegetation, shooting, alteration of water systems for water distribution systems, maintenance of existing water development features such as dams or diversion structures, and disturbance from recreation. The use of breeding area closures and close monitoring through the Bald Eagle Nestwatch program have been and will continue to be essential to the recovery of this species...

^396 USFWS 1997b
American southwest. Desert Plants 6(3):131-175.]; Stromberg, 1993

…Cumulative Effects of human Population Growth

Growth is projected in Cottonwood to increase by 148% and in Camp Verde to increase by 158% between 1994 and 2040 (Arizona Department of Economic Security 1994). This dynamic growth would lead to increased development, increased contamination, increased wildfires, and increased alteration of the watershed and hydrologic regime.

Cumulative Effects of Economic Development

The growth projected for this region will be manifested through economic development, including housing, golf courses, businesses, industry, roads, schools, and other facilities for the population. These facilities will replace natural vegetation and cover large expanses of the floodplain and watershed with impermeable surfaces. A primary result will be the alteration of the watershed characteristics and changes in the hydrologic and sediment patterns, sources, and volumes…

Cumulative Effects of Future Visitation/Recreation

If all urban/suburban areas in Arizona continue to grow at the existing and anticipated rate, the Verde Valley and the Verde watershed will continue to experience rapid increases in recreational use of both private and public lands. The increase will be particularly focused on the Verde River and its riparian corridor. Bank compaction and erosion, channel morphology changes, riparian vegetation suppression and loss, increased pollution and trash, construction of picnicking another recreational facilities with the riparian
corridor, and many other adverse impacts will destroy or adversely alter razorback sucker habitat and habitat for bald eagle prey species. Bald eagle will be subjected to increasing disturbance effects and may have increased problems with entanglement in monofilament fishing line...” \(^{397}\) (USFWS 1998)

The April 19, 2002, USFWS Biological Opinion on the Apache Trout Enhancement Project, AESO/SE 2-21-02-F-101, states:

“…the Arizona population remains small and under threat from a variety of factors. Human disturbance of bald eagles is a continuing threat which may increase as numbers of bald eagles increase and human development continues to expand into rural areas (USFWS 1999). The bald eagle population in Arizona is exposed to increasing hazards from the regionally increasing human population. These include extensive loss and modification of riparian breeding and foraging habitat through clearing of vegetation, changes in groundwater levels, and changes in water quality. Threats persist in Arizona largely due to the proximity of bald eagle breeding areas to major human population centers and recreation areas. Additionally, because water is a scarce resource in the Southwest, recreation is concentrated along available water courses. Some of the continuing threats and disturbances to bald eagles include entanglement in monofilament fish line and fish tackle; overgrazing and related degradation of riparian vegetation; malicious and accidental harassment, including shooting, off-road vehicles, recreational activities (especially watercraft), and low-level aircraft overflights; alteration of aquatic and riparian systems for water distribution systems and maintenance of existing water development features such as dams or diversion structures; collisions with transmission lines; poisoning; and electrocution (Stahlmaster 1987). Contamination of Arizona bald eagles by heavy metals has also become a major concern.” \(^{398}\)

The February 21, 2003, USFWS Intra-Service Biological and Conference Opinion on Issuance of a Section 10(a)(1)(B) permit to Salt River Project for Operation of Roosevelt Lake, AESO/SE 2-21-03-F-0003 states:

“Productivity rates are lower in Arizona than the rest of the United States. There were 0.92 average young per occupied breeding area in Arizona before 1984 when there were less than 20 breeding areas, and 0.78 average young per occupied breeding area since 1984, as opposed to 0.96 average young per breeding in Alaska, Wisconsin, Florida, and Wisconsin (Arizona Game and Fish Department \emph{in prep.}, Sprunt \emph{et al.} 1973, McAllister \emph{et al.} 1986, Kozie and Anderson 1991). The average productivity rate from 1971 to 2002 on the Verde River was 0.92; the average productivity rate for the rest of Arizona was 0.72.

\(^{397}\) USFWS 1998
\(^{398}\) USFWS 2002a
Threats

Even though the bald eagle has been reclassified to threatened, and the status of the birds in the Southwest is on an upward trend, the Arizona population remains small and under threat from a variety of factors. Human disturbance of bald eagles is a continuing threat which may increase as numbers of bald eagles increase and human development continues to expand into rural areas (U.S. Fish and Wildlife Service 1999). The bald eagle population in Arizona is exposed to increasing hazards from the regionally increasing human population. These include extensive loss and modification of riparian breeding and foraging habitat through clearing of vegetation, changes in groundwater levels, and changes in water quality. Threats persist in Arizona largely due to the proximity of bald eagle breeding areas to major human population centers and recreation areas. Additionally, because water is a scarce resource in the Southwest, recreation is concentrated along available water courses. Some of the continuing threats and disturbances to bald eagles include entanglement in monofilament fish line and fish tackle; overgrazing and related degradation of riparian vegetation; malicious and accidental harassment, including shooting, off-road vehicles, recreational activities (especially watercraft), and low-level aircraft overflights; alteration of aquatic and riparian systems for water distribution systems and maintenance of existing water development features such as dams or diversion structures; collisions with transmission lines; poisoning; and electrocution (Beatty et al. 1999; Stalmaster 1987). In Arizona, the use of breeding area closures and close monitoring of nest sites through the ABENWP has been and will continue to be essential to the recovery of the species. Ensuring the longevity of the ABENWP is of primary concern to the Service (U.S. Fish and Wildlife Service 1999).

It is not known if the population of bald eagles in Arizona declined as a result of DDT contamination because records were not consistently kept during that time period. However, the possibility for contamination was present as DDT was used in Arizona and Mexico. Use of DDT in Mexico could potentially have contaminated waterfowl that then migrated through Arizona in addition to directly affecting juvenile and subadult eagles that traveled into Mexico.

Many of the nest sites in Arizona are in rugged terrain not suitable for agricultural development, and may therefore have avoided the direct effects of DDT (Hunt et al. 1992). Concentrations of heavy metals in bald eagle eggs are a concern in Arizona. Thirteen Arizona bald eagle eggs collected from 1994 to 1997 contained from 1.01 to 8.02 ppm dry weight mercury (Beatty et al. unpubl. data). Concentrations in the egg are highly correlated with risk to reproduction.

Adverse effects of mercury on bald eagle reproduction might be expected when eggs contain about 2.2 ppm mercury or more. Five of 10 eggs
approached or exceeded the 2.2 ppm threshold concentration. Mercury concentrations in addled eggs appears to be increasing over time. Addled bald eagle eggs collected in Arizona in 1995-97 contained more than two- to six-times higher concentrations of mercury than eggs collected in 1982-84 (appx. 0.39-1.26 ppm) (K. King pers. comm.)...

The Arizona Game and Fish Department’s (in prep.) draft Bald Eagle Conservation Assessment and Strategy provided a description of what is expected to occur in the future under the current management. They wrote, “it is reasonable to expect in the next two decades, the pairs (below Bartlett Dam) will have fewer trees in which to nest, roost, loaf, preen, and/or hunt. The (lower Verde River) breeding areas currently nest in overmature live trees, dying trees, or snags below dams with little regeneration. Poorly timed water releases, scouring, off-road vehicles, development, grazing, woodcutting, and agriculture threaten the riparian area. Managing agencies must minimize the factors impairing riparian vegetation to maintain the current distribution and abundance of eagles on the lower Verde River...” This document has been reviewed twice by the representatives of the Southwestern Bald Eagle Management Committee, including the U.S. Fish and Wildlife Service, Arizona Game and Fish Department, Reclamation, and SRP (J. Driscoll, Arizona Game and Fish Department, pers. comm.).

In the absence of concerted efforts to reverse habitat trends, we expect over the next 50 years that 5 of the lower Verde bald eagle breeding areas dependent on trees for nesting and perching will be lost due to continued riparian habitat degradation, prevention of habitat regeneration, and catastrophic fire. Because the Needle Rock, Box Bar, Fort McDowell, Doka, Sycamore, Rodeo, and Granite Reef breeding areas are in such close proximity, each pair is highly dependent on the existing over-mature trees in each breeding area for nesting and foraging, loafing, feeding, display, and/or sentry perches. As these trees continue to die and fall over, territories will be lost because there is little regeneration or growth of younger trees for replacement and as a result, there are not enough trees for nesting and foraging. Some multi-storied vegetation is developing along the Verde River between Sycamore Creek and the Fort McDowell Yavapai Nation/Salt River Pima Maricopa Indian Community boundary in the Sycamore and Rodeo breeding areas, possibly as a result of the introduction of sediment and nutrients from Sycamore Creek (W. Graf, University of South Carolina, pers. comm., J. Stromberg, Arizona State University, pers. comm.). Unfortunately, due to the proximity of Highway 87 and the growth of salt cedar, fire is a great risk to the longevity of this vegetation (J. Stromberg, Arizona State University, pers. comm., U.S. Fish and Wildlife Service 2002b).”

399 USFWS 2003b
20. A new CBD population viability analysis, based on AGFD survival estimates, demonstrates a high risk of extinction for this population within the next 57 and 82 years.400

The first widespread survey of Desert Nesting Bald Eagles in Arizona was done in 1975.401 The authors estimated that they surveyed 90% of potential habitat in Arizona, New Mexico and along the Colorado River, but did not offer estimates for probabilities of missed Breeding Areas (BAs). They found 21 BAs, 18 adults, and 5 fledglings.402 In 2003, AGFD reported 47 BAs, 42 occupied with 77 adults and 25 fledglings.403

In February 2003, CBD concluded, and presented publicly, that in spite of rising population figures, the Desert Nesting Bald Eagle population would likely face extinction within 60 to 100 years.404 We based this finding on published AGFD data and Hunt et al. (1992).405

In response, AGFD agreed to share unpublished data in order to work cooperatively to improve the predictability of the population model for the Desert Nesting Bald Eagle.406 Our 2003 conclusion concerning likely extinction probability remains unchanged in 2004.407

Despite debate concerning the utility of population models, extinction time distributions from stochastic population models remain the best available means to translate all the uncertainties and variables in vital rates into a range of population outcomes.408 Using AGFD median estimates for juvenile and adult survival, we now estimate that the Desert Nesting Bald Eagle population faces a high risk of extinction ("median years to extinction") in the next 57 to 82 years.409

For purposes of the population model, and consistent with documented observations, the Desert Nesting Bald Eagle is treated as a closed population not demographically linked to other populations. Exchanges with other populations are extremely rare as shown by band returns, direct observation, genetics, morphology and behavior.410

All available data on numbers of known BAs, numbers of occupied BAs and numbers of fledglings since 1970 as well as survival estimates were taken from

401 Rubink and Podborny 1976
402 Ibid.
403 AGFD 2004d
404 Arizona Republic 2003a, CBD 2003a
406 AGFD personal communication
407 CBD 2004e
408 Brook et al. 2002
409 CBD 2004e
published and unpublished records of AGFD and others.411 Vital rate estimates were entered into the Vortex version 9 model (www.vortex9.org) to produce corresponding ranges of extinction time and extinction probability estimates.

Specific IDs of sexes were lacking in most cases. The estimate of total adults at BAs was halved to estimate total adult female population, assuming a 50\% adult sex ratio. For the purposes of population modeling, we assumed that "birth" was represented by number of nestlings rather than eggs laid, as counts of numbers of eggs are less accurate than those of nestlings. Nestling counts are also more useful than using fledgling counts. Most BAs except in core areas around the Salt-Verde confluence, have been monitored by flights. Nestlings are scored as having fledged if they reach 8 weeks of age.412 This overestimates actual fledging, as nestlings scored as having fledged may have died after the observation. Only more intensive search could resolve if an individual had died rather than fledged. Nestling counts do also carry some uncertainty, however. Accordingly, nestlings counts were given minimum and maximum numbers for each year and BA. The maximum count was set equal to the high number of eggs (eg. for 1+ nestlings or eggs if nestlings unknown, high nestling number set to 2). There was no significant time trend in the low estimate of the number of young per BA, but the high estimate showed significant positive trend. The number of fledglings per BA does show significant declining trend with time, however (Fig. 2). This indicates a declining trend in survival of nestlings to fledgling stage.

Fecundity in the lower Verde and Salt BAs was inflated artificially by AGFD’s stocking of exotic rainbow trout and by Salt River Project’s release of native fish captured from irrigation canals into this area.413 To test for this effect, we divided BAs into 2 groups, those on the lower Salt River or lower Verde River up to Horseshoe Dam, and those outside this area.

412 AGFD unpublished data

413 AGFD 2004d
Figure 2. Percent of occupied, failed or successful BAs producing no, one, two or three young, low (top) and high (middle) estimates in each year and producing one two or three fledglings (bottom). Ordinal logistic regressions on year not significant for low young estimates, but significant and positive for high young estimates and significant and negative for fledgling production (P=0.038).
Table 1: Fecundity parameter estimates 1970-2003, excluding the lower Salt and Verde BA cluster

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>% females producing nestlings</td>
<td>53.46%</td>
<td>72.98%</td>
</tr>
<tr>
<td></td>
<td>(18.24% ESD)</td>
<td>(26.27% ESD)</td>
</tr>
<tr>
<td>% females producing nestlings (ignoring</td>
<td>75.95%</td>
<td>75.95%</td>
</tr>
<tr>
<td>Occupied BAs, avg nestling estimates</td>
<td></td>
<td>(15.23% ESD)</td>
</tr>
<tr>
<td>% successful females producing 1 nestlings</td>
<td>40.73</td>
<td>27.16</td>
</tr>
<tr>
<td>% successful females producing 2 nestlings</td>
<td>54.84</td>
<td>66.67</td>
</tr>
<tr>
<td>% successful females producing 3 nestlings</td>
<td>4.43</td>
<td>6.17</td>
</tr>
</tbody>
</table>

Lower estimates of productivities (nestlings/occupied BA) were significantly different between the two groups, being 50% higher in the Lower Verde/Salt cluster than at all other BAs (two-tailed t-test P=0.01). Productivity estimates were 1.23 for the Lower Verde/Salt cluster and 0.866 elsewhere. Upper estimates were not significantly different. The number of fledglings/occupied BA were also found to be significantly different (45% greater) in the Lower Verde/Salt cluster (two-tailed t-test P=0.03). The productivity of non-supplemented BAs was lower than the average of 0.96 young per occupied BA found in other states (AGFD 1999), while the productivity of supplemented BAs was substantially higher.

The lower Verde/Salt cluster of BAs were excluded for purposes of estimation of natural un-supplemented fecundity (Table 1). Using low estimates of nestling numbers and high estimates of adult numbers we derived low estimates for percent females producing nestlings in each year. Using high estimates of nestling numbers and low estimates of adult numbers, we derived high estimates of percent females producing nestlings in each year. Environmental standard deviations (ESD) were estimated by the method of Akcakaya (2002)414 (Table 1).

Vortex does not allow for an age-specific fecundity schedule. All adults are assumed to have the same fecundity. We used the modal rather than the earliest observed age of reproduction. Males have been recorded reproducing at 3 (sub-adults), with modal age of 4. Females have been recorded reproducing at 4, with modal age of 5. The oldest observed reproducing male was 22 years old (87M25 in 2003), and the oldest observed female 16 (87F26 in 1997 and 87J15 in 2003). A 25-year age of final reproduction was used for modeling purposes.

We estimated survival from nestling to fledgling using high and low estimates of nestling numbers. Nestling survival to fledging (low estimate) declined significantly with time (ordinal logistic regression P<0.001). The high estimate also declined with time but was only marginally significant (ordinal logistic regression P=0.127). Accordingly only the most recent period 1993-2003 was used to estimate nestling-fledgling survival for modeling purposes. The respective estimates of 47.3 (0.8% ESD) and 76.6 (7.9% ESD) were necessarily associated with the high and low estimates of percent of females successfully breeding (Table 1).

414 Akcakaya 2002
We did not attempt to derive independent estimates for post-fledging survival because the record of resightings available to us may not have been complete. AGFD estimated age and stage specific survival from resightings of marked nestlings using the program MARK. Because resighting observations were restricted to BAs, survival of juveniles can only be determined after a cohort has reached adulthood so that they can be resighted at breeding areas.

Some adult aged individuals not sighted at a breeding area may yet be alive and may form part of the non-breeding "floater" population. If they are presumed dead when not resighted as adults, survival to adult stage is underestimated. This is not a significant problem for population modeling, however, as floaters are non-breeding and do not appear at breeding areas. Although their survivorship may have been underestimated, fecundity is overestimated in a compensatory way by ignoring "floaters" and calculating fecundity based on the population found at breeding areas.

The AGFD best fitting model estimated survival from fledging to age 4 (maturity) at 0.28(0.147-0.466, 95% CI). For adults, annual survival was estimated at 0.877 (0.785-0.936, 95% CI).

The latter estimate may underestimate survival of all adults either occupying or breeding in BAs. Adults actually breeding (producing eggs) were significantly more likely to have a known age and identity, and therefore to be used in survival estimation than adults at BAs scored only as "occupied." Conversely adults in occupied BAs were less likely to be recognized and so would more often be presumed dead. This is a problematic bias as the count of adults at occupied BAs was included in calculation of the percent of females breeding successfully. One way around this bias is to only count adults at successful or failed BAs and ignore adults at occupied BAs for purposes of fecundity estimation. This inflates fecundity but in a fashion that compensates somewhat for the downward bias in survival estimation. Rather than use minimum and maximum numbers of nestlings to bracket this estimate, the average of the two was used. This estimate is shown in Table 1.

Although AGFD found consistently lower male survival, they did not find it was statistically significant. Observed nesting sex ratio determined during banding averaged 65% males. Thus male mortality would have to be higher than females to result in a 50:50 adult sex ratio at breeding areas. Such a sex ratio must apply to the population at breeding areas, although there may be more males in the floater population. Therefore mortality estimates were sex-corrected to result in a 50% sex ratio in the adult population (Table 2). Use of uncorrected mortalities resulted in underestimation of female numbers and overestimation of extinction risk.

A phenomenon peculiar to Desert Nesting Bald Eagles that corroborates AGFD's high adult mortality estimates is the unusually high proportion of sub-adults attempting to breed. From 1987 to 1990, Hunt et al. (1992) counted 39 individuals recruited into the breeding pool, of which 61.5% (n=24) were in subadult plumage. From 1991 to 1998, of 66 such recruits, 29% (n=19) were in subadult plumage. No subadult

415 AGFD unpublished data
416 Ibid.
417 Ibid.
418 Ibid.
breeding has produced fledglings. Outside Arizona, the known incidence of subadults attempting to breed is rare (0.02%).419 AGFD has suggested that this phenomenon results from "an insufficiency of adults in the floating segment" of the population, most likely due to high adult mortality.420

Juvenile mortality is also unusually high. From 1987 to 1999, there were 214 fledglings.421 However, 97 or 41% of this number of fledglings were subsequently found dead. This corroborates the high level of mortality of juveniles (mean 72%, lower 95% CI 54%) estimated by AGFD.

We used AGFD survival estimates to estimate juvenile number in 2003 from nestling numbers in each of the four years prior to 2003. We arrive at an estimated population size of 166 Desert Nesting Bald Eagles in Arizona by combining our estimate of juvenile numbers with AGFD estimates of adults and nestling numbers. We started our simulations from stable rather than observed age/sex distribution. We ran multiple simulations of Vortex with parameter combinations to bracket the greatest range of uncertainty in the data. In addition, five simulations varied key parameters by 10% to examine sensitivity of the model to a fixed 10% change in vital rates (Table 2).

The baseline scenario used the low estimate of annual proportions of females breeding and proportions of breeding females with 1, 2 or 3 young (Table 1), the high estimate of nestling to fledging survival and the AGFD estimates of juvenile and adult survival. Nearly 100% of simulated populations went extinct within 100 years (Fig. 3, top graph).

The "Bias correction" scenario counted female adults, excluding "occupied" BAs, and excluding the lower Verde/Salt cluster. The numbers of nestlings were calculated as the average of low and high estimates. This correction was done to account for the possibility that survival to adult stage had been underestimated by the bias toward resightings at breeding nests. However, this bias correction did not appreciably change predicted extinction time or probability (Table 2, Figure 3, middle graph).

The "Hi Fec." scenario used the maximum estimates of nestling numbers in each BA and year, but excluding the lower Verde/Salt cluster (Table 1). However, this required the use of the low estimate of nestling to fledgling survival, which was based on the high nestling estimate. Extinction time projections were worse than baseline under this scenario (Table 2).

The "Hi Sjuv" scenario used the upper 95% confidence interval of juvenile survival (fledging to age 4) as reported by AGFD.422 This resulted in a dramatic reduction in extinction risk to 15% in 100 years with a lambda close to stationary value of 1.0 (Table 2). Models utilizing upper 95% confidence intervals are controversial owing to the fact that they are at the margin or high end of the range of known variation in survival estimates. They are best-case scenarios.423

The "Hi Sad" scenario used the upper 95% confidence interval of adult survival as reported by AGFD.424 This also resulted in a dramatic reduction in extinction risk to

419 Hunt et al. 1992
420 AGFD 1994b
421 AGFD 1999a, 2000
422 AGFD unpublished data
423 CBD 2004e
424 AGFD unpublished data
just 4% in 100 years with a lambda close to stationarity, but nevertheless with a slow average population decline over the model timeframe (Table 2, Figure 3, bottom graph).

Inclusion of 10% ESD for mortality estimates, as opposed to the baseline of zero, resulted in a fourfold increase in extinction risk for the "Hi Sad" scenario from 4% to 16%, without any change in lambda (Table 2).

A nestling sex ratio of 50% was used instead of the 65% observed, with concomitant removal of sex differentials in mortalities. This did not greatly alter the results of the baseline scenario (Table 2).

Simulations increasing % successful females, % with 2 nestlings, % nestling survival, % juvenile survival and % adult survival by 10% in turn, showed that juvenile and adult survival were the most critical parameters for the model, confirming qualitative arguments by Stalmaster (1987) among others. These parameters are expected to be more important simply because their influence extends across so many year classes.

The foregoing analysis was based on the assumption of indefinite continuation of the same environmental conditions and vital rates that have prevailed in recent years. However this assumption is not justified by available evidence. The risk of extinction for this population is undoubtedly even much higher owing to the fact that threats to its continued existence are increasing.425

No catastrophes, no heavy metal toxicity, no declines in habitat extent and quality (i.e., native fish decline, habitat loss, lack of nest tree recruitment, urban sprawl, stream dewatering), no habitat carrying capacity, and no inbreeding factors were included in the simulations. All of these factors aggravate extinction risk.

Figure 3. Means (+/- S.D.) of population sizes and percent of simulations extinct (dashed line) for top: baseline scenario; middle: bias corrected scenario; and bottom: upper 95% CI of adult survival.
TABLE 2. Vortex simulations, parameters and results. All simulations were run 1000 times for 100 model years. Blank cells indicate parameters same as baseline.

<table>
<thead>
<tr>
<th>Model</th>
<th>Base-line</th>
<th>Bias correction</th>
<th>Hi</th>
<th>Hi</th>
<th>Hi</th>
<th>Hi</th>
<th>Hi</th>
<th>Hi</th>
<th>50% males</th>
<th>1.1x</th>
<th>1.1x</th>
<th>1.1x</th>
<th>1.1x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population initial</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Age females mature</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Age males mature</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>High breeding age</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>% females breeding</td>
<td>53.5%</td>
<td>76.0%</td>
<td>74.0%</td>
<td>58.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV in % breeding</td>
<td>18.2%</td>
<td>15.2%</td>
<td>26.3%</td>
<td></td>
</tr>
<tr>
<td>% w 1 nestlings</td>
<td>40.7%</td>
<td>33.9%</td>
<td>27.2%</td>
<td>36.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% w 2 nestlings</td>
<td>54.8%</td>
<td>60.7%</td>
<td>66.7%</td>
<td>60.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% w 3 nestlings</td>
<td>4.5%</td>
<td>5.4%</td>
<td>6.2%</td>
<td>3.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nestling sex ratio</td>
<td></td>
</tr>
<tr>
<td>% males</td>
<td>65.0%</td>
<td></td>
</tr>
<tr>
<td>FEMALES</td>
<td></td>
</tr>
<tr>
<td>Mortality Nestling->1</td>
<td>40.5%</td>
<td>49.3%</td>
<td>63.3%</td>
<td>32.4%</td>
<td>44.3%</td>
<td>34.6%</td>
<td>34.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV in Mort N->1</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>Mortality 1->2</td>
<td>22.3%</td>
<td>11.8%</td>
<td>27.3%</td>
<td>14.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV in Mort 1->2</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>Mortality 2->3</td>
<td>22.3%</td>
<td>11.8%</td>
<td>27.3%</td>
<td>14.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV in Mort 2->3</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>Mortality 3->4</td>
<td>22.3%</td>
<td>11.8%</td>
<td>27.3%</td>
<td>14.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV in Mort 3->4</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>Mortality 4->5+</td>
<td>12.3%</td>
<td>6.4%</td>
<td>6.4%</td>
<td>3.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV in Mort 4->5+</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>MALES</td>
<td></td>
</tr>
<tr>
<td>Mortality Nestling->1</td>
<td>49.0%</td>
<td>53.9%</td>
<td>68.5%</td>
<td>42.1%</td>
<td>44.3%</td>
<td>43.9%</td>
<td>43.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV in Mort N->1</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>Mortality 1->2</td>
<td>33.5%</td>
<td>24.4%</td>
<td>27.3%</td>
<td>26.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV in Mort 1->2</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>Mortality 2->3</td>
<td>33.5%</td>
<td>24.4%</td>
<td>27.3%</td>
<td>26.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV in Mort 2->3</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>Mortality 3->4</td>
<td>33.5%</td>
<td>24.4%</td>
<td>27.3%</td>
<td>26.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV in Mort 3->4</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>Mortality 4->5+</td>
<td>12.3%</td>
<td>6.4%</td>
<td>6.4%</td>
<td>3.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV in Mort 4->5+</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>RESULTS</td>
<td></td>
</tr>
<tr>
<td>Lambda</td>
<td>0.952</td>
<td>0.967</td>
<td>0.947</td>
<td>0.995</td>
<td>0.995</td>
<td>0.96</td>
<td>0.96</td>
<td>0.953</td>
<td>0.96</td>
<td>0.984</td>
<td>1.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median years to extinction</td>
<td>66</td>
<td>82</td>
<td>57</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>73</td>
<td>74</td>
<td>67</td>
<td>>100</td>
<td>>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% extinct 100 yrs</td>
<td>96.5%</td>
<td>82.2%</td>
<td>99.5%</td>
<td>15.0%</td>
<td>4.0%</td>
<td>16.0%</td>
<td>89.1%</td>
<td>89.2%</td>
<td>95.5%</td>
<td>89.6%</td>
<td>12.6%</td>
<td>0.0%</td>
<td></td>
</tr>
</tbody>
</table>

1. Loss of this discrete population would result in a significant gap in the range of the Bald Eagle.

For more than 20 years, USFWS has recognized the fact that the Southwest represents a significant portion of the Bald Eagle range. It follows logically then that loss of the Desert Nesting population would result in a significant gap in the range of the Bald Eagle.

Several authors have speculated about the consequences of this population’s loss. CBD can find no credible evidence that Bald Eagles elsewhere possess the ability to adapt to the unique and hostile environmental habitat in which the Desert Nesting population has evolved. Hunt et al. (1992) says,

“…were the [Southwestern Desert Nesting Bald Eagle] population extirpated, there is no firm reason to believe that bald eagles released into Arizona from elsewhere would possess the adaptations required to increase their numbers. Furthermore, releases to augment a reduced population in Arizona might be deleterious because of genetic disruption of existing adaptations.

Similarly, AGFD (1994b) says,

“…Because Arizona continues to possess nearly the entire breeding population within the Southwestern Region, concerns remain over retaining the genetic integrity of this population…Should a population crash occur in Arizona, the pool of eagles to repopulate the Southwest could be left to the few pairs in the neighboring states or Mexico. However, at this time, there is no documentation of eagles from these neighboring Southwestern states breeding in Arizona or vice versa.”

2. The Southwestern Desert Nesting Bald Eagle Population is truly a Distinct Population Segment.

The Desert Nesting Bald Eagle population is isolated and discrete from other Bald Eagle populations as a consequence of physical, physiological, ecological, and

426 CBD 2004d; ESA Sections 3 & 4; SWCBD 1999;
behavioral factors.433 We have already documented the facts that the population (a) persists in the unique ecological setting of the Sonoran life zones of the desert Southwest,434 (b) is smaller than other Bald Eagles,435 (c) is behaviorally unique,436 (d) is reproductively isolated,437 that the current understanding of genetics does not refute its discrete and isolated nature,438 and that its loss would result in a significant gap in the range of the Bald Eagle.439

“[B]ald eagles in the southwestern United States have been considered as a distinct population for the purposes of consultation and recovery efforts under the Act.”440 USFWS population policy reads as if the Desert Nesting population were its model:

"…SUMMARY: The Fish and Wildlife Service and the National Marine Fisheries Service (Services) have adopted a policy to clarify their interpretation of the phrase "distinct population segment of any species of vertebrate fish or wildlife" for the purposes of listing, delisting, and reclassifying species under the Endangered Species Act of 1973, as amended (16 U.S.C. 1531 et. seq.) (Act).

Policy

Three elements are considered in a decision regarding the status of a possible DPS as endangered or threatened under the Act. These are applied similarly for addition to the lists of endangered and threatened wildlife and plants, reclassification, and removal from the lists:

1. Discreteness of the population segment in relation to the remainder of the species to which it belongs;
2. The significance of the population segment to the species to which it belongs; and
3. The population segment's conservation status in relation to the Act's standards for listing (i.e., is the population segment, when treated as if it were a species, endangered or threatened?).

Discreteness: A population segment of a vertebrate species may be considered discrete if it satisfies either one of the following conditions:

437 CBD 2004e, Hunt et al. 1992, SWCBD 1999
439 USFWS 2003b
1. It is markedly separated from other populations of the same taxon as a consequence of physical, physiological, ecological, or behavioral factors. Quantitative measures of genetic or morphological discontinuity may provide evidence of this separation…

Significance: If a population segment is considered discrete under one or more of the above conditions, its biological and ecological significance will then be considered in light of Congressional guidance (see Senate Report 151, 96th Congress, 1st Session) that the authority to list DPS's be used “sparingly” while encouraging the conservation of genetic diversity. In carrying out this examination, the Services will consider available scientific evidence of the discrete population segment's importance to the taxon to which it belongs. This consideration may include, but is not limited to, the following:

1. Persistence of the discrete population segment in an ecological setting unusual or unique for the taxon,
2. Evidence that loss of the discrete population segment would result in a significant gap in the range of a taxon…

Because precise circumstances are likely to vary considerably from case to case, it is not possible to describe prospectively all the classes of information that might bear on the biological and ecological importance of a discrete population segment.

Status: If a population segment is discrete and significant (i.e., it is a distinct population segment) its evaluation for endangered or threatened status will be based on the Act's definitions of those terms and a review of the factors enumerated in section 4(a). It may be appropriate to assign different classifications to different DPS's of the same vertebrate taxon.”

CBD has reviewed all USFWS listings of Distinct Population Segments.

USFWS has listed 39 populations as Distinct Population Segments since the USFWS (1996a) DPS rule.

<table>
<thead>
<tr>
<th>Common</th>
<th>Scientific</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mexican duck (U.S. DPS)</td>
<td>Anas diazi (U.S. DPS)</td>
<td>1967 03-11-67 (32 FR 04001)</td>
</tr>
<tr>
<td>Gray wolf (Eastern DPS)</td>
<td>Canis lupus (Eastern DPS)</td>
<td>1967 03-11-67 (32 FR 04001)</td>
</tr>
<tr>
<td>Gray wolf (Southeastern DPS)</td>
<td>Canis lupus (Southeastern DPS)</td>
<td>1967 03-11-67 (32 FR 04001)</td>
</tr>
<tr>
<td>Gray wolf (Western DPS)</td>
<td>Canis lupus (Western DPS)</td>
<td>1967 03-11-67 (32 FR 04001)</td>
</tr>
<tr>
<td>Bald eagle (Continental U.S. DPS)</td>
<td>Haliaeetus leucocephalus (Continental U.S. DPS)</td>
<td>1967 03-11-67 (32 FR 04001)</td>
</tr>
<tr>
<td>Columbian white-tailed deer (Columbia River DPS)</td>
<td>Odocoileus virginianus leucurus (Columbia River DPS)</td>
<td>1967 03-11-67 (32 FR 04001)</td>
</tr>
</tbody>
</table>

441 USFWS 1996a
442 CBD 2004d
443 Ibid.
<table>
<thead>
<tr>
<th>Species</th>
<th>Scientific Name</th>
<th>Date of Listing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbian white-tailed deer (Douglas County DPS)</td>
<td>Odocoileus virginianus leucurus (Douglas County DPS)</td>
<td>1967 03-11-67 (32 FR 04001)</td>
</tr>
<tr>
<td>Gila topminnow (U.S. DPS)</td>
<td>Poeciliopsis occidentalis (U.S. DPS)</td>
<td>1967 03-11-67 (32 FR 04001)</td>
</tr>
<tr>
<td>Yuma clapper rail (U.S. DPS)</td>
<td>Rallus longirostris yumanensis (U.S. DPS)</td>
<td>1967 03-11-67 (32 FR 04001)</td>
</tr>
<tr>
<td>Everglade snail kite (FL DPS)</td>
<td>Rostrhamus sociabilis plumbeus (FL DPS)</td>
<td>1967 03-11-67 (32 FR 04001)</td>
</tr>
<tr>
<td>Gray Whale (non-Northeast Pacific DPS)</td>
<td>Eschrichtius robustus pop. 1</td>
<td>1970 06-02-70 (35 FR 08491)</td>
</tr>
<tr>
<td>Gray whale (northeast Pacific DPS)</td>
<td>Eschrichtius robustus pop. 3</td>
<td>1970 06-02-70 (35 FR 08491)</td>
</tr>
<tr>
<td>Brown pelican (southeastern DPS)</td>
<td>Pelecanus occidentalis (southeastern DPS)</td>
<td>1970 10-13-70 (35 FR 16047)</td>
</tr>
<tr>
<td>Brown pelican (western DPS)</td>
<td>Pelecanus occidentalis (western DPS)</td>
<td>1970 10-13-70 (35 FR 16047)</td>
</tr>
<tr>
<td>Grizzly bear (Continental U.S. DPS)</td>
<td>Ursus arctos horribilis (Continental U.S. DPS)</td>
<td>1975 07-28-75 (40 FR 31734)</td>
</tr>
<tr>
<td>Bahama swallowtail butterfly (U.S. DPS)</td>
<td>Heracilides andraemon bonhotei (U.S. DPS)</td>
<td>1976 04-28-76 (41 FR 17736)</td>
</tr>
<tr>
<td>Gray wolf (Southwest DPS)</td>
<td>Canis lupus (Southwest DPS)</td>
<td>1976 04-28-76 (41 FR 17740)</td>
</tr>
<tr>
<td>Pine barrens treefrog (Florida DPS)</td>
<td>Hyla andersonii (Florida DPS)</td>
<td>1977 11-11-77 (42 FR 58754)</td>
</tr>
<tr>
<td>Woodland caribou (Selkirk DPS)</td>
<td>Rangifer tarandus caribou (Selkirk DPS)</td>
<td>1983 01-14-83 (48 FR 01722) EM; 1983 10-25-83 (48 FR 49245) EM; 1984 02-29-84 (49 FR 07390) F</td>
</tr>
<tr>
<td>Wood stork (U.S. breeding DPS)</td>
<td>Mycteria americana Wood stork (U.S. breeding DPS)</td>
<td>1984 02-28-84 (49 FR 07332)</td>
</tr>
<tr>
<td>Mariana fruit bat (Guam DPS)</td>
<td>Pteropus mariannus mariannus (Guam DPS)</td>
<td>1984 08-27-84 (49 FR 33881)</td>
</tr>
<tr>
<td>Least tern (Interior DPS)</td>
<td>Sterna antillarum (Interior DPS) (=Sterna antillarum athalassos)</td>
<td>1985 05-28-85 (50 FR 21784)</td>
</tr>
<tr>
<td>Flattened musk turtle (Black Warrior River DPS)</td>
<td>Sternotherus depressus (Black Warrior River DPS)</td>
<td>1987 06-11-87 (52 FR 22418)</td>
</tr>
<tr>
<td>Audubon's crested caracara (Florida DPS)</td>
<td>Polyborus planucus audubonii (=Caracara cheriway audubonii) (Florida DPS)</td>
<td>1987 07-06-87 (52 FR 25229)</td>
</tr>
<tr>
<td>Gopher Tortoise (western DPS)</td>
<td>Gopherus polyphemus (western DPS)</td>
<td>1987 07-07-87 (52 FR 25376)</td>
</tr>
<tr>
<td>Roseate tern (Caribbean DPS)</td>
<td>Sterna dougallii dougallii (Caribbean DPS)</td>
<td>1987 11-02-87 (52 FR 42064)</td>
</tr>
<tr>
<td>Roseate tern (Northeast DPS)</td>
<td>Sterna dougallii dougallii (Northeast DPS)</td>
<td>1987 11-02-87 (52 FR 42064)</td>
</tr>
<tr>
<td>Desert tortoise (Mojave DPS)</td>
<td>Gopherus agassizii pop. 1</td>
<td>1989 08-04-89 (54 FR 32326) EM; 1990 04-02-90 (55 FR 12178) F</td>
</tr>
<tr>
<td>Steller sea-lion (eastern DPS)</td>
<td>Eumetopias jubatus (eastern DPS)</td>
<td>1990 04-05-90 (55 FR 12645) EM; 1990 11-26-90 (55 FR 49203) F</td>
</tr>
<tr>
<td>Steller sea-lion (western DPS)</td>
<td>Eumetopias jubatus (western DPS)</td>
<td>1990 04-05-90 (55 FR 12645) EM; 1990 11-26-90 (55 FR 49203) F</td>
</tr>
<tr>
<td>Species Description</td>
<td>Scientific Name</td>
<td>Date Announced/Proposed</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Chinook salmon (Sacramento River winter run DPS)</td>
<td>Oncorhynchus tshawytscha pop. 7</td>
<td>1990 04-06-90 (55 FR 12831) EM; 1990 11-30-90 (55 FR 49623) F</td>
</tr>
<tr>
<td>Rice rat (Lower Florida Keys DPS)</td>
<td>Oryzomys palustris natator (=Oryzomys palustris pop. 3)</td>
<td>1991 04-30-91 (56 FR 49623) F</td>
</tr>
<tr>
<td>Sockeye salmon (Snake River DPS)</td>
<td>Oncorhynchus nerka pop. 1</td>
<td>1991 11-20-91 (56 FR 58619)</td>
</tr>
<tr>
<td>Chinook salmon (Snake River fall run DPS)</td>
<td>Oncorhynchus tshawytscha pop. 2</td>
<td>1992 04-22-92 (57 FR 14653)</td>
</tr>
<tr>
<td>Chinook salmon (Snake River spring-summer run DPS)</td>
<td>Oncorhynchus tshawytscha pop. 8</td>
<td>1992 04-22-92 (57 FR 14653)</td>
</tr>
<tr>
<td>Marbled murrelet (OR, WA, CA DPS)</td>
<td>Brachyramphus marmoratus marmoratus (OR, WA, CA DPS)</td>
<td>1992 06-22-92 (57 FR 27848)</td>
</tr>
<tr>
<td>Western snowy plover (Pacific DPS)</td>
<td>Charadrius alexandrinus nivosus (Pacific DPS)</td>
<td>1993 03-05-93 (58 FR 12864)</td>
</tr>
<tr>
<td>White sturgeon (Kootanai River DPS)</td>
<td>Acipenser transmontanus pop. 1</td>
<td>1994 09-06-94 (59 FR 45989)</td>
</tr>
<tr>
<td>Coastal cutthroat trout (Umpqua River DPS)</td>
<td>Oncorhynchus clarki clarki (Umpqua River DPS)</td>
<td>1996 08-09-96 (61 FR 41514)</td>
</tr>
<tr>
<td>Coho salmon (Central California DPS)</td>
<td>Oncorhynchus kisutch pop. 4</td>
<td>1996 10-31-96 (61 FR 56138)</td>
</tr>
<tr>
<td>Copperbelly water snake (northern DPS)</td>
<td>Nerodia erythrogaster neglecta (northern DPS)</td>
<td>1997 01-29-97 (62 FR 04183)</td>
</tr>
<tr>
<td>Cactus ferruginous pygmy owl (AZ DPS)</td>
<td>Glaucidium brasilianum cactorum (AZ DPS)</td>
<td>1997 03-10-97 (62 FR 10730)</td>
</tr>
<tr>
<td>Steller's eider (AK breeding DPS)</td>
<td>Polysticta stelleri (AK breeding DPS)</td>
<td>1997 06-11-97 (62 FR 31748)</td>
</tr>
<tr>
<td>Coho salmon (southern OR and northern CA DPS)</td>
<td>Oncorhynchus kisutch pop. 2</td>
<td>1997 06-18-97 (62 FR 33038)</td>
</tr>
<tr>
<td>Steelhead trout (Southern California DPS)</td>
<td>Oncorhynchus mykiss pop. 10</td>
<td>1997 08-18-97 (62 FR 43937)</td>
</tr>
<tr>
<td>Steelhead trout (Upper Columbia River DPS)</td>
<td>Oncorhynchus mykiss pop. 12</td>
<td>1997 08-18-97 (62 FR 43937)</td>
</tr>
<tr>
<td>Steelhead trout (Snake River DPS)</td>
<td>Oncorhynchus mykiss pop. 13</td>
<td>1997 08-18-97 (62 FR 43937)</td>
</tr>
<tr>
<td>Steelhead trout (Central California DPS)</td>
<td>Oncorhynchus mykiss pop. 8</td>
<td>1997 08-18-97 (62 FR 43937)</td>
</tr>
<tr>
<td>Steelhead trout (South-central California coast DPS)</td>
<td>Oncorhynchus mykiss pop. 9</td>
<td>1997 08-18-97 (62 FR 43937)</td>
</tr>
<tr>
<td>Bog turtle (Northern DPS)</td>
<td>Clemmys muhlenbergii (=Glyptemys muhlenbergii) Northern DPS</td>
<td>1997 11-04-97 (62 FR 59605)</td>
</tr>
<tr>
<td>Bighorn sheep (Peninsular ranges DPS)</td>
<td>Ovis canadensis pop. 2</td>
<td>1998 03-18-98 (63 FR 13134)</td>
</tr>
<tr>
<td>Steelhead trout (Lower Columbia River DPS)</td>
<td>Oncorhynchus mykiss pop. 14</td>
<td>1998 03-18-98 (63 FR 13347)</td>
</tr>
<tr>
<td>Steelhead trout (Central Valley DPS)</td>
<td>Oncorhynchus mykiss pop. 11</td>
<td>1998 03-19-98 (63 FR 13347)</td>
</tr>
<tr>
<td>Coho salmon (Oregon Coast DPS)</td>
<td>Oncorhynchus kisutch pop. 3</td>
<td>1998 08-10-98 (63 FR 42587)</td>
</tr>
<tr>
<td>Chinook salmon (Lower Columbia River DPS)</td>
<td>Oncorhynchus tshawytscha pop. 1</td>
<td>1999 03-24-99 (64 FR 14308); 1999 08-02-99 (64 FR 41835)</td>
</tr>
<tr>
<td>Chinook salmon (Upper Columbia River spring run DPS)</td>
<td>Oncorhynchus tshawytscha pop. 12</td>
<td>1999 03-24-99 (64 FR 14308); 1999 08-02-99 (64 FR 41835)</td>
</tr>
<tr>
<td>Chinook salmon (Puget Sound DPS)</td>
<td>Oncorhynchus tshawytscha pop. 15</td>
<td>1999 03-24-99 (64 FR 14308); 1999 08-02-99 (64 FR 41835)</td>
</tr>
<tr>
<td>Species Name</td>
<td>Scientific Name</td>
<td>Populations</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Chinook salmon (Upper Willamette River DPS)</td>
<td>Oncorhyncus tshawytscha</td>
<td>23</td>
</tr>
<tr>
<td>Chum salmon (Hood Canal summer run DPS)</td>
<td>Oncorhyncus keta</td>
<td>2</td>
</tr>
<tr>
<td>Chum salmon (Columbia River DPS)</td>
<td>Oncorhyncus keta</td>
<td>3</td>
</tr>
<tr>
<td>Steelhead trout (Upper Willamette River winter run DPS)</td>
<td>Oncorhyncus mykiss</td>
<td>33</td>
</tr>
<tr>
<td>Sockeye salmon (Ozette Lake DPS)</td>
<td>Oncorhyncus nerka</td>
<td>2</td>
</tr>
<tr>
<td>California bighorn sheep (Sierra Nevada DPS)</td>
<td>Ovis canadensis</td>
<td>3</td>
</tr>
<tr>
<td>Steelhead trout (Middle Columbia River DPS)</td>
<td>Oncorhyncus mykiss</td>
<td>17</td>
</tr>
<tr>
<td>Lake Erie water snake (off-shore DPS)</td>
<td>Nerodia sipedon insularum</td>
<td></td>
</tr>
<tr>
<td>Chinook salmon (Central Valley spring run DPS)</td>
<td>Oncorhyncus tshawytscha</td>
<td>11</td>
</tr>
<tr>
<td>Chinook salmon (California Coast DPS)</td>
<td>Oncorhyncus tshawytscha</td>
<td>17</td>
</tr>
<tr>
<td>Steelhead trout (Northern California DPS)</td>
<td>Oncorhyncus mykiss</td>
<td>16</td>
</tr>
<tr>
<td>Atlantic salmon (U.S. DPS)</td>
<td>Salmo salar</td>
<td>5</td>
</tr>
<tr>
<td>Pygmy rabbit (Columbia Basin DPS)</td>
<td>Brachylagus idahoensis</td>
<td>2</td>
</tr>
<tr>
<td>Mississippi gopher frog (DPS)</td>
<td>Rana capito sevosa (Mississippi DPS) (=Rana sevosa)</td>
<td></td>
</tr>
<tr>
<td>Mountain yellow-legged frog (Southern California DPS)</td>
<td>Rana muscosa</td>
<td>1</td>
</tr>
<tr>
<td>California tiger salamander (Sonoma County DPS)</td>
<td>Ambystoma californiense (Sonoma County DPS)</td>
<td></td>
</tr>
<tr>
<td>Smalltooth sawfish (U.S. DPS)</td>
<td>Pristis pectinata (U.S. DPS)</td>
<td></td>
</tr>
</tbody>
</table>

USFWS’ (1996a) discussion accompanying the Federal Register notice of DPS policy is also supportive of DPS designation for the Desert Nesting Bald Eagle population. USFWS responses to questions regarding the policy follow:

"[Question:] Only Full Species are Genetically Distinct From one Another, and Listing Should Only be Extended to These Genetically Distinct Entities."
[USFWS’ response:] …Restricting listings to full taxonomic species would render the Act’s definition of species, which explicitly includes subspecies and DPS’s of vertebrates, superfluous. Clearly the Act is intended to authorize listing of some entities that are not accorded the taxonomic rank of species, and the Services are obliged to interpret this authority in a clear and reasonable manner.

[Question:] The Services Should Focus on Genetic Distinctness in Recognizing a Distinct Population Segment. Conversely, Some Respondents Believed There Should be No Requirement That a DPS be Genetically Differentiated or Recognizable for it to be Protected by the Act.

[USFWS’ response:] …The Services understand the Act to support interrelated goals of conserving genetic resources and maintaining natural systems and biodiversity over a representative portion of their historic occurrence. The draft policy [59 FR 65885, December 21, 1994] was intended to recognize both these intentions, but without focusing on either to the exclusion of the other. Thus, evidence of genetic distinctness or of the presence of genetically determined traits may be important in recognizing some DPS’s, but the draft policy was not intended to always specifically require this kind of evidence in order for a DPS to be recognized...Thus in determining whether the test for discreteness has been met under the policy, the Services allow but do not require genetic evidence to be used. At least one respondent evidently understood the draft policy to require that genetic distinctness be demonstrated before a DPS could be recognized, and criticized the draft on that basis. As explained above, this was never intended.

[Question:] The Elements Describing Reasons for Considering a Population Segment Significant Should be Laid Out Comprehensively, Rather Than Presented as an Open-Ended Set of Examples as in the Draft Policy.

[USFWS’ response:] The Services appreciate the need to make a policy on this subject as complete and comprehensive as possible, but continue to believe that it is not possible to describe in advance all the potential attributes that could be considered to support a conclusion that a particular population segment is “significant” in terms of the policy. When a distinct population is accepted or rejected for review pursuant to a petition or proposed for listing or delisting, the Services intend to explain in detail why it is considered to satisfy both the discreteness and significance tests of the policy.

[Question:] In Assessing the Significance of a Potential Distinct Population Segment, the Services Should Focus on its Importance to the Status of the Species to Which it Belongs. Alternatively, the Services Should Emphasize the Importance of a Potential DPS to the Environment in Which it Occurs.
Despite its orientation toward conservation of ecosystems, the Services do not believe the Act provides authority to recognize a potential DPS as significant on the basis of the importance of its role in the ecosystem in which it occurs. In addition, it may be assumed that most, if not all, populations play roles of some significance in the environments to which they are native, so that this importance might not afford a meaningful way to differentiate among populations. On the other hand, populations commonly differ in their importance to the overall welfare of the species they represent, and it is this importance that the policy attempts to reflect in the consideration of significance.

Complete Reproductive Isolation Should be Required as a Prerequisite to the Recognition of a Distinct Population Segment.

The Services do not consider it appropriate to require absolute reproductive isolation as a prerequisite to recognizing a distinct population segment. This would be an impractically stringent standard, and one that would not be satisfied even by some recognized species that are known to sustain a low frequency of interbreeding with related species…

The Occurrence of a Population Segment in an Unusual Setting Should Not Be Used as Evidence for its Significance.

The Services continue to believe that occurrence in an unusual ecological setting is potentially an indication that a population segment represents a significant resource of the kind sought to be conserved by the Act [Endangered Species Act]. In any actual cases of a DPS recognized in part on this basis, the Services will describe in detail the nature of this significance when accepting a petition or proposing a rule.

The Services Should Stress Uniqueness and Irreplaceability of Ecological Functions in Recognizing DPS's.

The Services consider the Act to be directed at maintenance of species and populations as elements of natural diversity. Consequently, the principal significance to be considered in a potential DPS will be the significance to the taxon to which it belongs. The respondent appears to be recommending that the Services consider the significance of a potential DPS to the community or ecosystem in which it occurs and the likelihood of another species filling its niche if it should be extirpated from a particular portion of its range. These are important considerations in general for the maintenance of healthy ecosystems, and they often coincide with conservation programs supported by the Act. Nevertheless, the Act is not intended to establish a comprehensive biodiversity conservation program, and it would be improper for the Services to recognize a potential DPS as
significant and afford it the Act's substantive protections solely or primarily on these grounds.

[Question:] Congress did not Intend to Require That DPS's be Discrete. In a Similar Vein, Congress did not Require That a Potential DPS be Significant to be Considered Under the Act.

[USFWS' response:] With regard to the discreteness standard, the Services believe that logic demands a distinct population recognized under the Act be circumscribed in some way that distinguishes it from other representatives of its species. The standard established for discreteness is simply an attempt to allow an entity given DPS status under the Act to be adequately defined and described. If some level of discreteness were not required, it is difficult to imagine how the Act could be effectively administered or enforced. At the same time, the standard adopted does not require absolute separation of a DPS from other members of its species, because this can rarely be demonstrated in nature for any population of organisms. The standard adopted is believed to allow entities recognized under the Act to be identified without requiring an unreasonably rigid test for distinctness. The requirement that a DPS be significant is intended to carry out the expressed congressional intent that this authority be exercised sparingly as well as to concentrate conservation efforts undertaken under the Act on avoiding important losses of genetic diversity.

[Question:] A Population Should Only be Required to be Discrete or Significant, But Not Both, to be Recognized as a Distinct Population Segment.

[USFWS' response:] The measures of discreteness and significance serve decidedly different purposes in the policy, as explained above. The Services believe that both are necessary for a policy that is workable and that carries out congressional intent. The interests of conserving genetic diversity would not be well served by efforts directed at either well defined but insignificant units or entities believed to be significant but around which boundaries cannot be recognized.

[Question:] Requiring That a DPS be Discrete Effectively Prevents the Loss of Such a Segment From Resulting in a Gap in the Distribution of a Species. Essentially, if Distinct Populations are Entirely Separate, the Loss of One Has Little Significance to the Others.

[USFWS' response:] If the standard for discreteness were very rigid or absolute, this could very well be true. However, the standard adopted allows for some limited interchange among population segments considered to be discrete, so that loss of an interstitial population could well have consequences for gene flow and demographic stability of a species as a whole. On the other hand, not only population segments whose loss would produce a gap in the range of a species can be recognized as significant, so
that a nearly or completely isolated population segment could well be judged
significant on other grounds and recognized as a distinct population
segment.444

The ongoing, current applicability of USFWS (1996a) has been reiterated this
July 2004.445

3. USFWS’ downlisting and delisting efforts including the Desert Nesting
population violate law and precedent and lack scientific merit.446

The July 6, 1999, proposal to remove the Southwestern Desert Nesting Bald
Eagle from the ESA List of Threatened and Endangered Species implies that
accomplishment of Recovery Plan goals provides the primary basis for delisting. For
the Southwest Recovery Region, the proposal reads:

“…Recovery within recovery regions has also been
successful…\textit{Southwestern Recovery Region}…Reclassification Goals: 10 – 12
young per year over a 5-year period: population range has to expand to
include one or more river drainages in addition to the Salt and Verde
Systems…”447

Much has been learned in the nearly twenty years since the production of the
Southwest Region Bald Eagle Recovery Plan.448 The Recovery Plan has not been
updated to include current knowledge.

Status reviews continue to express concern of the tenuous nature of the
Southwestern Desert Nesting Bald Eagle’s existence.449 Nothing has changed
biologically since these warnings and recommendations were originally offered.450 In
fact, the threats to the continued existence of this population have now increased.451

444 USFWS 1996a
445 USFWS 2004b
Chino Valley Review 2004; CNN 2004; DES 2004a, 2004b; Desert Fishes Team 2003, 2004; Driscoll 1995, 1999; Driscoll and
Beatty 1994; Driscoll et al. 1992, 1993; EPA 2004b; ESA Sections 3 & 4; Franklin 1980; Gerrard and Bortoletti 1988; Gilpin and
Soule 1986; Hunt et al. 1992; IUCN 2001; Krueper 1993; Lande 1987; Lofgren et al. 1990; Mesta et al. 1992; National Geographic
2004; Observer/UK 2004; Ohmart and Sell 1980; Prescott 2001; Prescott Daily Courier 2004a, 2004b; Soule 1980; Stalmaster 1987;
447 USFWS 1999c
448 USFWS 1992
449 AGFD 1999a, 2000; CBD 2004a, SWCBD 1999
450 AGFD 1999a, 2000; CBD 2004a, SWCBD 1999: USFWS 1999c
Review 2004; CNN 2004; DES 2004a, 2004b; Desert Fishes Team 2003, 2004; Driscoll 1995, 1999; Driscoll and
Beatty 1994; Driscoll et al. 1992, 1993; EPA 2004b; ESA Sections 3 & 4; Franklin 1980; Gerrard and Bortoletti 1988; Gilpin and
Soule 1986; Hunt et al. 1992; IUCN 2001; Krueper 1993; Lande 1987; Lofgren et al. 1990; Mesta et al. 1992; National Geographic
2004; Observer/UK 2004; Ohmart and Sell 1980; Prescott 2001; Prescott Daily Courier 2004a, 2004b; Soule 1980; Stalmaster 1987;

111
After the 1990 Bald Eagle reclassification meetings, USFWS raptor biologist Robert Mesta writes:

"…Although this region (Southwest) has met its recovery goals, both the recovery team and the FWS have recommended against downlisting because of threats to habitat, small size of population, and adverse climatic conditions…

…In our original recommendation we asked that the southwest recovery team be reactivated…I believe it is imperative that the existing plan be updated to accurately reflect the current status and needs of the southwest population…" 452

During the five-year regional species review accomplishing recovery plan goals were qualified:

"…Subject: 5 Year Species Review; June 11, 1992…Species…Bald eagle…Comments…BEs have exceeded all recovery goals in SW, but only by continuing intensive management. Without those measures, extirpation is foreseeable." 453

Similarly, on September 8, 1992, USFWS states:

"…Bald Eagle…The ABENWP [Arizona Bald Eagle Nestwatch Program] has been directly responsible for saving up to 60% of a single year’s nestlings from natural and human-caused threats…As the ABENWP has made clear, accidental and malicious disturbance at the nest site is a significant threat. Loss and modification of habitat is also a threat, as urban and rural expansion continues in Arizona…Recovery Needs: Continuation of the ABENWP, in addition to protection afforded by Sections 7 and 9 of the Act, are likely to be the most important and effective recovery actions. With these actions, the southwestern bald eagle is likely to remain stable or continue to increase in numbers. Without them, however, decline and loss of habitat are likely." 454

The 1993 USFWS Bald Eagle Status Review of the Southwestern Desert Nesting population states:

"…New Information places recovery goals and current status in new perspective. Since 1988, extensive research and surveys have refined our knowledge of distribution, demographics, and general ecology. (This research largely resulted from a Section 7 Reasonable and Prudent Alternative, under which the Bureau of Reclamation funded in excess of $3 million in research

452 USFWS 1990c
453 USFWS 1992b
454 USFWS 1992c
and monitoring. [the Section 7 Reasonable and Prudent Alternative was non-discretionary owing to protection pursuant to the Endangered Species Act].)

Important points:...Productivity follows boom-bust pattern...High adult mortality...Increasing threats: habitat loss in highest quality habitat, disturbance/persecution in highest quality habitat...Nestwatch program (AZ) instrumental in recovering and maintaining population...Discussion: Nesting bald eagles remain very rare in the Southwest...Current population still smaller than historic...it is recognized that a prolonged hot/dry cycle (which reduces productivity), coupled with persistent high adult mortality, could quickly cause the population to be endangered again. At present, the Arizona Bald Eagle NestWatch Program is crucial in maintaining population. Virtually all regional authorities agree that without ABENWP, the population would be endangered...because of small population size and increasing or static threats, delisting is very unlikely."455

AGFD (1999a, 2000) concludes similarly:

“...The 1982 Southwestern Bald Eagle Recovery Plan

For recovery planning and management purposes, the USFWS divided the bald eagle population in the lower 48 states into five recovery regions. The Southwestern Recovery Region consists of Arizona, New Mexico, Oklahoma and Texas west of the 100th Meridian, and the Colorado River along the Arizona-California border.

The Southwestern Bald Eagle Recovery Plan goals were to (a) establish breeding birds in one or more river drainages in addition to those of the Salt and Verde rivers, (b) have 10 to 12 young produced annually for a five-year period, and (c) identify important winter habitat. These goals have long been surpassed. Occupied bald eagles BAs now exist on the Salt, Verde, Bill Williams, Agua Fria, Gila, San Francisco and Little Colorado rivers. Annual productivity has averaged 19 young since 1982. Mid-winter counts have been performed in most years since 1982, and the important winter habitats are reasonably well known.

The goals of the Southwestern Recovery Plan were met within three years of its drafting. This is not surprising since little was known about bald eagles in the southwestern region when the plan was written. Productivity and mortality rates were not documented, and the effects of human disturbance, entanglement in fishing line, and natural parasites in nests were unknown.

The Recovery Plan acknowledged these gaps in knowledge, and called for subsequent revision of recovery goals and objectives as new information emerged. No revisions were written and no delisting goals were established."456

455 USFWS 1993b
456 AGFD 1999a, 2000
4. **The inadequacy of existing regulatory mechanisms are contributing to the vulnerability of the Desert Nesting Bald Eagle population.**

We have already established that the Desert Nesting population’s survival is dependent, in good part, on heroic human support and management by the Arizona Bald Eagle Nestwatch Program (ABENWP). We have also documented that ABENWP funding is not secure.

AGFD (1994a) states:

> “Presently, there are few binding consultations for any agency to commit funding to existing bald eagle programs under section 7 of the Endangered Species Act. Now, funding assistance by agencies is primarily based upon available funds and where they choose to allocate those dollars. The Service believes that if eagles are downlisted, the perception of “recovery” could result in reduced support for programs which support proactive management and protection. Approximately 63 percent ($101,000) of all bald eagle dollars comes from agencies other than AGFD. A reduction in these programs would result in reduced productivity of breeding bald eagles…”

USFWS’ 1995 downlisting of the Southwestern Desert Nesting Eagle from Endangered to Threatened significantly weakened its protection. AGFD (1994a) documents USFWS own summary of the mechanical and attitudinal weakening effects of the downlisting.

> “The Service [USFWS] said the change in status is complex on paper and striking in the reduced protection a bird has under section 9. “Take” under threatened status does not include protection of the bird’s habitat as it does under endangered status. Additionally, the downlisted status could alter the perception of “recovery” by agencies resulting in lack of proactive management and support for existing programs.

The definition of “take” is different between endangered and threatened status in section 9 beginning at part 9.2e. The Endangered Species Act (ESA) delegates protection of a threatened species to other federal acts protecting the species in question. The ESA offers no additional protection of its own. In

460 AGFD 1994a
461 AGFD 1994a, USFWS 1994c, USFWS 1995
462 AGFD 1994a
the case of bald eagles the protection would fall under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. What these acts lack is the protection of habitat for the bald eagle. This makes permits (grazing, recreation, water-use) easier to acquire and increases the difficulty in reaching a jeopardy decision when writing biological opinions.

The definition of “take” under the Endangered Species Act allows the Service more flexibility when addressing habitat loss and cumulative effects. The Service is faced with making a “jeopardy” or “non-jeopardy” decision based upon whether a project will affect the continued existence of the bald eagle in the Southwest. If the answer is “no,” “reasonable and prudent measures” are identified to reduce incidental take. These measures are mandatory, but may not significantly alter the timing, scope or other aspects of the project. In these cases, the USFWS does not have the authority to significantly alter projects for the benefit of the species. When a project does warrant a “jeopardy” decision, the Service can alter a project for the benefit of the bird. By reducing the bird’s status to threatened, the Service’s ability to reach jeopardy determinations based on loss of habitat and therefore its ability to alter projects for the benefit of the eagle will be greatly reduced...

The beginning of section 7a.1 states that “all federal agencies shall…carry out programs for the conservation of endangered species and threatened species listed…” This is to occur regardless of any decision made by the USFWS or an outcome of a consultation. In reality, agencies only perform these activities when forced and view a non-jeopardy decision as a permit to move forward often with little regard for endangered species...

Presently, there are few binding consultations for any agency to commit funding to existing bald eagle programs under section 7 of the Endangered Species Act. Now, funding assistance by agencies is primarily based upon available funds and where they choose to allocate those dollars...

Not only does habitat protection assist the bald eagle, but it contributes to protection of riparian vegetation, streams and the animals living in these ecosystems. Clearly, our most precious habitat in Arizona is riparian. Eagles are a barometer for the health of these systems. In central Arizona, the most successful and dependable nesting sites of the past have shown declines. Downlisting the species to threatened not only reduces the protection for the eagle, but also for the entire central Arizona river ecosystem. Stating that the eagle is no longer endangered indirectly suggests that central Arizona rivers are also less endangered and are able to withstand additional development...

The bird becomes less “recoverable” as development persists in central Arizona. As populations increase in rural Arizona and the Phoenix metropolitan area, so does the demand for development, easier access, more recreation, and improved facilities. The Service takes into account these foreseeable trends when arriving at their decisions under endangered status. If habitat protection is removed from consideration when evaluating a project
because the bald eagle is downlisted to threatened, we can expect a decline in the Arizona bald eagle population.463

The accuracy of this memo can be documented extensively as downlisting contributes to the increasing threats to the continued existence of the Desert Nesting population.464 The effects of the downlisting include:

a. Cattle grazing continues within the riparian habitat critical to the Desert Nesting Bald Eagle.465

b. Dam operations do not release water at times necessary for replenishment of riparian nest trees.466

c. Dewatering of remnant free-flowing rivers continues.467

d. Exotic fish continue to be introduced in native fish habitat.468

e. Low flying aircraft continue and will increasingly continue adversely affecting the population.469 Flight advisories are not mandatory and are routinely ignored.470

f. USFWS’ approval of Desert Nesting Bald Eagle deaths is excessive.471

From 1992 through 2004, USFWS reviewed and approved Federal projects responsible for deaths of up to 95 Desert Nesting Bald Eagles (adults, fledglings and/or nestlings).472 Over the 50-year life of these projects, USFWS expects, and has approved, 561 cumulative deaths!473 Thirty percent of occupied eagle nesting territories in Arizona may be adversely affected by these planned projects.474

USFWS has piecemealed the evaluation of these projects to avoid arriving at the obvious conclusion that, cumulatively, these projects will jeopardize the continued existence of the Desert Nesting population.475 In 1995, a U.S. District Court examined USFWS’ similar ruse in attempting to weaken habitat protection for the Mexican Spotted

463 AGFD 1994a

465 AGFD 1999a, 2000; Driscoll 1999; USFWS 1997b, 1998, 2002a, 2003b

466 AGFD 1999a, 2000; USFWS 1997b, 2003b

467 Desert Fishes Team 2003, 2004; Verde natural Resources Conservation District 1999

468 Desert Fishes Team 2003, 2004;

469 AGFD 1999a, 2000; USFWS 1993a, 1994c, 1997b, 2002a, 2003b

470 AGFD 1999a, 2000; USFWS 1993a, 1994c, 1997b, 2002a, 2003b

471 AGFD 1994b; USFWS 1992d, 1993a, 1994c, 1996b, 1997b

473 USFWS 1992d, 1993a, 1994c, 1996b, 1999a, 2000a, 2003b

474 AGFD 1994b

475 USFWS 1992d, 1993a, 1994c, 1996b, 1999a, 2000a, 2003b
In that case, we established the fact that an evaluation claiming non-jeopardy effects by individual projects across a landscape does not accurately reflect the programmatic net effect. As a result, USFWS was forced to modify its projects affecting the Mexican Spotted Owl.

The Endangered Species Act is clear:

"DEFINITIONS…SEC. 3. For the purposes of this Act- ...(5)(A) The term "critical habitat" for a threatened or endangered species means- (i) the specific areas within the geographical area occupied by the species, at the time it is listed in accordance with the provisions of section 4 of this Act, on which are found those physical or biological features (I) essential to the conservation of the species and, (ii) which may require special management considerations or protection; and (iii) specific areas outside the geographical area occupied by the species at the time it is listed in accordance with the provisions of section 4 of this Act, upon a determination by the Secretary that such areas are essential for the conservation of the species…(B) Critical habitat may be established for those species now listed as threatened or endangered species for which no critical habitat has heretofore been established as set forth in subparagraph (A) of this paragraph. (C) Except in those circumstances determined by the Secretary, critical habitat shall not include the entire geographical area which can be occupied by the threatened or endangered species…"

"DEFINITIONS…SEC. 3. For the purposes of this Act- ...(6) The term "endangered species" means any species which is in danger of extinction throughout all or a significant portion of its range other than a species of the Class Insecta determined by the Secretary to constitute a pest whose protection under the provisions of this Act would present an overwhelming and overriding risk to man…(15) The term "species" includes any subspecies of fish or wildlife or plants, and any distinct population segment of any species or vertebrate fish or wildlife which interbreeds when mature.

"DETERMINATION OF ENDANGERED SPECIES AND THREATENED SPECIES…Sec. 4…(a) GENERAL.- (1) The Secretary shall by regulation promulgated in accordance with subsection (b) determine whether any species is an endangered species or a threatened species because of any of the following factors: (A) the present or threatened destruction, modification, or curtailment of its habitat or range; (B) overutilization for commercial,
recreational, scientific, or educational purposes; (C) disease or predation; (D) the inadequacy of existing regulatory mechanisms; (E) other natural or manmade factors affecting its continued existence...(3) The Secretary, by regulation promulgated in accordance with subsection (b) and to the maximum extent prudent and determinable- (A) shall, concurrently with making a determination under paragraph (1) that a species is an endangered species or a threatened species, designate any habitat of such species which is then considered to be critical habitat;

DETERMINATION OF ENDANGERED SPECIES AND THREATENED SPECIES...Sec. 4...(b) BASIS FOR DETERMINATIONS.- ...(1)(A) The Secretary shall make determinations required by subsection (a)(1) solely on the basis of the best scientific and commercial data available to him after conducting a review of the status of the species and after taking into account those efforts, if any, being made by any State or foreign nation, or any political subdivision of a State or foreign nation, to protect such species, whether by predator control, protection of habitat and food supply, or other conservation practices, within any area under its jurisdiction, or on the high seas...(B) In carrying out this section, the Secretary shall give consideration to species which have been- (i) designated as requiring protection from unrestricted commerce by any foreign nation, or pursuant to any international agreement; or (ii) identified as in danger of extinction, or likely to become so within the foreseeable future, by any State agency or by any agency of a foreign nation that is responsible for the conservation of fish or wildlife or plants...(2) The Secretary shall designate critical habitat, and make revisions thereto, under subsection (a)(3) on the basis of the best scientific data available and after taking into consideration the economic impact, and any other relevant impact, of specifying any particular area as critical habitat. The Secretary may exclude any area from critical habitat if he determines that the benefits of such exclusion outweigh the benefits of specifying such area as part of the critical habitat, unless he determines, based on the best scientific and commercial data available, that the failure to designate such area as critical habitat will result in the extinction of the species concerned...(C) A final regulation designating critical habitat of an endangered species or a threatened species shall be published concurrently with the final regulation implementing the determination that such species is endangered or threatened, unless the Secretary deems that- ...(i) it is essential to the conservation of such species that the regulation implementing such determination be promptly published; or (ii) critical habitat of such species is not then determinable, in which case the Secretary, with respect to the proposed regulation to designate such habitat, may extend the one-year period specified in subparagraph (A) by not more than one additional year, but not later than the close of such additional year the Secretary must publish a final regulation, based on such data as may be available at that time, designating, to the maximum extent prudent, such habitat.
The Southwestern Desert Nesting Population is a Distinct Population Segment. It is in danger of extinction throughout its range owing to the following three factors:

1. Its habitat faces present and threatened destruction, modification, or curtailment.

2. Existing regulatory mechanisms are inadequate.

3. Other natural or manmade factors threaten its continued existence.

Each of these factors has already been extensively documented in this Petition. The habitat essential to the conservation of the Southwestern Desert Nesting Distinct Population Segment has also been well defined, and documented in this Petition. Simply summarized, the habitat essential for the conservation of the Desert...
Nesting Bald Eagle consists of upper and lower Sonoran desert riparian habitat throughout the Colorado Plateau, Central Arizona, Western New Mexico, and Northern Mexico.486

V. Conclusion

While we have documented an increasing number of known Desert Nesting Bald Eagle Breeding Areas in the last 30 years, the population is seriously endangered.487 The population’s situation is akin to that of a train traveling with a sputtering engine, faulty brakes, and flashing warning lights. As the train makes progress struggling up the last hill on the journey home, the danger and risk of the final, brakeless downhill leg of the journey hovers supremely.

Several summary statements have been made over the last few years. They remain timely. Even before recognition of the extent of increasing habitat threats, the extent of Subadult breeding participation, etc., USFWS (1992c) summarizes:

“…The ABENWP has been directly responsible for saving up to 60% of a single year’s nestlings from natural and human-caused threats…As the ABENWP has made clear, accidental and malicious disturbance at the nest site is a significant threat. Loss and modification of habitat is also a threat, as urban and rural expansion continues in Arizona…Recovery Needs: Continuation of the ABENWP, in addition to protection afforded by Sections 7 and 9 of the Act, are likely to be the most important and effective recovery actions. With these actions, the southwestern bald eagle is likely to remain stable or continue to increase in numbers. Without them, however, decline and loss of habitat are likely.”488

Driscoll et al. (1993) similarly concludes:

“The present rate of adult mortality in the Arizona bald eagle population and the high percentage of young eagles recruited into breeding pairs, creates a situation akin to walking the blade of a sword. If environmental or other

486 Ibid.
488 USFWS 1992c
factors result in low productivity for several years, those cohorts may be insufficient to fill the vacancies left by adult mortalities four years in the future, at which point, the Arizona bald eagle population would decline without immigration from outside the state.\(^{489}\)

USFWS (1994a) adds:

“…current information indicates that the population is at risk and remains in danger of extinction due to excessively low survival rates and the need for intensive management, particularly at nest sites…

…In addition to threats common with other Recovery Regions, such as human disturbance and availability of adequate nesting and feeding habitat, the bald eagles of the Southwestern Recovery Region are subjected to a high adult rate of mortality, isolation, heat stress, and nest parasites. The Arizona Bald Eagle Nestwatch Program has significantly increased survival of young by minimizing human disturbance during important incubation periods, and by removing harmful material such as parasites and fishing line debris from nests. However, the high death rate of adults and nestlings which may cause inbreeding to adversely affect the population’s long-term survival, remain limiting; this population continues to require intensive management, particularly around each nest site.

Hunt et al. (1992) estimate a minimum annual mortality rate of 16 to 22 percent of adult breeding birds and believe it to be much higher. Bald eagles commonly live 20 years in the wild and up to 50 years in captivity (Stalmaster 1987). In the Southwestern region, adult life expectancy may not exceed 10-12 years (Hunt et al. 1992)…

Research to date indicates there has been no immigration to this population of bald eagles. According to Hunt et al., this small population is isolated and thus is subject to the genetic, demographic, and environmental threats known to be associated with small populations. For these reasons, the population is in continued need of strict protection and intensive management…

Service Action: Retain as endangered. Despite attaining all recovery plan goals, current information indicates that the population is at risk and remains in danger of extinction due to excessively low survival rates and the need for intensive management, particularly at nest sites.\(^{490}\)

In 1999, SWCBD (1999) observes:

“Removal of the Southwestern Desert Nesting Bald Eagle from the List of Threatened and Endangered Species is akin to signing their death warrant. The Southwestern Desert Nesting Bald Eagle remains dangerously small. It

\(^{489}\) Driscoll et al. 1993

\(^{490}\) USFWS 1994a
has not yet recovered to the point of long-term viability. Less than 60 breeding pairs of this behaviorally isolated population survive.

The Southwestern Desert Nesting Bald Eagle survives the desert heat with the unique adaptation of nesting in the winter and fledging in the spring before the summer heat peaks. The Desert Nesting population breeds in isolation with 99.997% of objectively identified breeding individuals coming from the southwestern population. With high mortality rates of fledglings, with productivity rates lower than those recorded elsewhere in North America, and with large percentage of subadults prematurely entering the breeding population, the status of the Southwestern Desert Nesting Bald Eagle remains tenuous.

Some years, many of the surviving fledglings do so purely owing to human emergency treatment actions. This mostly consists of removing fishing line, hooks, and lures from nestling eagles. Half of all breeding areas contain fishing tackle. Thousands of potentially dangerous actions, including shooting, are documented each year already. Funding of this protective program is not secure.

In addition, the Desert Nesting population faces the threats of dam and reservoir management, of increasing habitat encroachment by development, of continued habitat destruction by grazing, and of unavailability of replacement nest trees. Agricultural, mining, industrial, as well as municipal water consumption increasingly compete for the same water the Bald Eagles require for survival.

Obviously, challenges for this population are formidable. Only Endangered Species Act protection mandates enforceable evaluation of these planned projects. Only the Endangered Species Act provides enforceable protection for the Southwest Bald Eagle and the habitat necessary to its survival.491

CBD, Maricopa Audubon and the Arizona Audubon Council now sincerely believe that increasing protection will be necessary if the Southwestern Desert Nesting Bald Eagle is to survive. In support, we submit this Petition to (1) recognize the biologically, behaviorally and ecologically isolated Southwestern Desert Nesting Bald Eagle Population (Haliaeetus leucocephalus) as a Distinct Population Segment, (2) to list this Population as Endangered, (3) and to designate Critical Habitat for this Population.

Please keep us advised of all proceedings in this matter. In 90 days, pursuant to Section 4(b)(3)(A), we expect acknowledgement of the fact that (1) this Petition presents substantial scientific information indicating that the petitioned action is warranted, and (2) that USFWS has commenced a formal review of the Desert Nesting Bald Eagle Distinct Population Segment for designation as Endangered with Critical Habitat.
If you have any questions, please contact, Robin Silver, M.D., Board Chair, Center for Biological Diversity, P.O. Box 39629, Phoenix, AZ 85069-9382; Phone: 602 246 4170; FAX: 602 249 2576; or Email: rsilver@biologicaldiversity.org.

Sincerely,

Robin Silver, M.D.
Board Chair
VI. References

AGFD 1993. Arizona Riparian Inventory and Mapping Project, Arizona Game and Fish Department, Phoenix, December 1, 1993.

AGFD 1994a. Inter-office Memo; from Susan Sferra, Nongame Birds Program Manager; to Terry Johnson, Nongame Branch Chief; Subject: Bald Eagle: threatened versus endangered; October 24, 1994.

AGFD 1999b. Delisting of the Bald Eagle, Arizona Game and Fish Department, September 23, 1999.

I have to dredge a lake at Havasu, or shoot a spotted owl somewhere, or build a bridge across a creek that the BLM and the Forest Service don’t want us to build.”

Arizona Republic 1997. "Environmental laws need to be reshaped, not repealed," Joel Nilsson, Arizona Republic, October 18, 1997; quoting Governor Jane Hull, at the Western States Republican Leadership Conference in Reno, Nevada, on October 5, 1997, “Republicans must unite to end the war on the West. Environmental laws, truly the most egregious of all regulations, must be controlled…Our western industries and traditions must be preserved.”

Driscoll 1999. Driscoll, James T., Arizona Game and Fish Department, correspondence to Dr. Robert Witzeman, Maricopa Audubon Conservation Chair, September 28, 1999.

ESA Section 3(6). “SEC. 3. For the purposes of this Act-...(6) The term "endangered species" means any species which is in danger of extinction throughout all or a significant portion of its range other than a species of the Class Insecta determined by the Secretary to constitute a pest whose protection under the provisions of this Act would present an overwhelming and overriding risk to man.

ESA Section 3(15). “SEC. 3. For the purposes of this Act-… (15) The term "species" includes any subspecies of fish or wildlife or plants, and any distinct population segment of any species or vertebrate fish or wildlife which interbreeds when mature.

ESA Section 3(19). “SEC. 3. For the purposes of this Act-... (19) The term "threatened species" means any species which is likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range.

Sierra Vista Herald 1998. “Hull: Jobs before some types of birds, animals,” Bill Hess, Sierra Vista Herald, September 11, 1998; quoting Governor Jane Hull, “Someday the federal government will realize jobs are more important than small animals.”

SWCBD 1999. Correspondence to Dr. Jody Gustitus Millar, Bald Eagle Recovery Coordinator, U.S. Fish and Wildlife Service, 4469-48th Avenue Court, Rock Island, IL 61201; RE: “The US Fish and Wildlife Service (USFWS) proposal to remove the Southwestern Desert Nesting Bald Eagle from the Endangered Species Act (ESA) List of Threatened and Endangered Species is not based on science, policy or law. The proposal is arbitrary and capricious.”; from Robin Silver, M.D., Conservation Chair, SWCBD, PO Box 39629, Phoenix, AZ 85069-9382; October 4, 1999.

USFWS 1990c. Correspondence, RE: Recommendation against downlisting this population at this time; from Mike Spear, Regional Director, Fish and Wildlife Service, Albuquerque; to Richard Glinski, Leader, Southwestern Bald Eagle Recovery Team, Arizona Game and Fish Department, Phoenix, October 15, 1990.

USFWS 1997b. Biological Opinion for the safety of dams modifications at Horse Mesa Dam located on the Salt River PXAO-1500 ENV-4.00 97003218 8341, December 29, 1997.

March 5, 2005

Mr. Dale Hall
Regional Director
U.S. Fish and Wildlife Service
P.O. Box 1306
Albuquerque, New Mexico 87103

Mr. Steve Spangle
Arizona State Director
Arizona Ecological Services Field Office
U.S. Fish and Wildlife Service
2321 West Royal Palm Road, Suite 103
Phoenix, Arizona 85021-4915

Dear Messrs. Hall and Spangle,

RE: ADDENDUM to the Petition to (1) Recognize the biologically, behaviorally and ecologically Isolated Southwestern Desert Nesting Bald Eagle (Haliaeetus leucocephalus) population as a Distinct Population Segment, (2) to List this population as Endangered, (3) and to Designate Critical Habitat for this population

On October 6, 2004, the Center for Biological Diversity, with Maricopa Audubon Society and the Arizona Audubon Council, filed the Petition to (1) Recognize the biologically, behaviorally and ecologically Isolated Southwestern Desert Nesting Bald Eagle (Haliaeetus leucocephalus) population as a Distinct Population Segment, (2) to List this population as Endangered, (3) and to Designate Critical Habitat for this population. In correspondence, dated February 11, 2005, the U.S. Fish and Wildlife Service (USFWS) requests “additional clarification on the geographic extent of the southwestern desert nesting bald eagle population.”

We respond to your question with our observation that the data documented and cited in our Petition supports listing as Endangered with Critical Habitat of the Distinct Population Segment of Southwestern Desert Nesting Bald Eagle consistent with the geographical boundaries including the Sonoran Desert riparian areas of central Arizona and northwestern Mexico. These areas are mapped as (1) as “Sonoran Desert Scrub” in Brown (1973) [The Natural Vegetative Communities of Arizona, David E. Brown, Arizona Game and Fish Department, 1973 “Based on Arizona Natural Communities by C.H. Lowe, 1964”; citing Shreve (1951); and (2) Brown (1994) [Brown, DE (ed.). 1994. Biotic Communities,

Canaca et al. states:

“Most of Arizona’s bald eagle breeding habitat exists between 329 and 1719 m (1080 and 5640 ft) elevation in central Arizona. These BAs occur within the Upper and Lower Sonoran Life Zones and transition areas (Brown 1994).”

In addition, please include the following new information in your evaluation process:

- Three more adult members of the closed population of Southwestern Desert Nesting Bald Eagle were poisoned to death in 2004.¹
- Prescott and Prescott Valley have committed to close the Big Chino Valley real estate purchase that will lead to the dewatering of the upper Verde River.²
- Newly published U.S. Geological Survey study confirms the peril to the upper Verde River by the newly committed Big Chino Valley groundwater pumping.³
- Species recovery is twice as likely to occur with designated Critical Habitat.⁴
- Global warming and prolonged Southwest drought evidence continues to accumulate.⁵
- Endangered Species’ protection against harm by toxins has been significantly weakened by new pesticide regulations allowing the Environmental Protection Agency (EPA) to not consult with USFWS before deciding whether pesticides are likely to harm Threatened and Endangered Species and their habitat, and whether any steps should be taken to limit the harm.⁶ EPA’s record in protecting Endangered Species is abysmal.⁷
- The Southwestern Desert Nesting Bald Eagle was historically more plentiful than previously thought owing to the results of our new ethnographic review with Native Peoples of the Southwest.⁸

¹ Arizona Republic 2005; Personal communication AGFD February 2005
² Prescott Daily Courier 2004
³ USGS 2005
⁴ CBD 2003; Nature 2003
⁶ National Wildlife Federation 2004
⁷ Arizona Daily Star 2004; CBD 2004
⁸ Personal communication with traditional members and representatives of the Fort McDowell Apache, White Mountain Apache, San Carlos Apache, Yavapai Apache Tribes.
If you have any questions, please contact, Robin Silver, M.D., Board Chair, CBD, P.O. Box 39629, Phoenix, AZ 85069-9382; Phone: 602 246 4170; FAX: 602 249 2576; or Email: rsilver@biologicaldiversity.org.

Sincerely,

Robin Silver, M.D.
Board Chair

References:

